Recent Trends of Quantitative Approaches in Different Sectors: A Concise Review

Kumar Vijayendra

University of Pittsburgh, USA.

An Fantone

Washington, USA.

*Author to whom correspondence should be addressed.


The approaches and methods used in qualitative and quantitative research represent various research strategies and have diverse theoretical, epistemological, and ontological concerns. Every strategy will depend on how the researchers gather and analyze their data. It is important to use caution when doing research on problem-solving lessons in secondary scientific education to prevent bias in the collection and interpretation of data. Despite the fact that both methods are employed by academics, the quantitative technique is more popular because of its strengths and qualities. To measure actions, views, attitudes, and other characteristics and draw generalizations from a larger population, quantitative research is utilized. In order to express facts and identify trends in study, quantitative research uses quantifiable data. When conducting this kind of research, results are derived using statistical and mathematical tools. This review article focuses on the basic terminologies of quantitative research, its applications in various sectors and reasons why quantitative research approaches surpass qualitative research methods.

Keywords: Quantitative research QR, quantitative techniques (QT), correlation, descriptive

How to Cite

Vijayendra, Kumar, and An Fantone. 2023. “Recent Trends of Quantitative Approaches in Different Sectors: A Concise Review”. Asian Journal of Education and Social Studies 41 (2):22-34.


Download data is not yet available.


Creswell J, Fetters M, Clark VP, Morales A. Mixed methods research for nursing and the health sciences; 2009.

Creswell JW, Clark VLP. Designing and conducting mixed methods research. Sage Publications; 2017.

Petticrew M, Cummins S, Ferrell C, Findlay A, Higgins C, Hoy C et al. Natural experiments: An underused tool for public health? Public Health. 2005;119(9):751-7. DOI: 10.1016/j.puhe.2004.11.008

Booth A, Moore G, Flemming K, Garside R, Rollins N, Tunçalp Ö et al. Taking account of context in systematic reviews and guidelines considering a complexity perspective. BMJ Glob Health. 2019;(4;Suppl 1):e000840.

DOI: 10.1136/bmjgh-2018-000840

Cargo M, Harris J, Pantoja T, Booth A, Harden A, Hannes K et al. Cochrane Qualitative and Implementation Methods Group guidance series-paper 4: Methods for assessing evidence on intervention implementation. J Clin Epidemiol. 2018; 97:59-69. DOI: 10.1016/j.jclinepi.2017.11.028

Noyes J, Hendry M, Booth A, Chandler J, Lewin S, Glenton C et al. Current use was established and Cochrane guidance on selection of social theories for systematic reviews of complex interventions was developed. J Clin Epidemiol. 2016;75: 78-92. DOI: 10.1016/j.jclinepi.2015.12.009

De Savigny D, Adam T. Systems thinking for health systems strengthening. World Health Organization; 2009.

Victora CG, Habicht JP, Bryce J. Evidence-based public health: moving beyond randomized trials. Am J Public Health. 2004;94(3):400-5. DOI: 10.2105/ajph.94.3.400

Fletcher A, Jamal F, Moore G, Evans RE, Murphy S, Bonell C. Realist complex intervention science: applying realist principles across all phases of the Medical Research Council framework for developing and evaluating complex interventions. Evaluation (Lond). 2016;22 (3):286-303. DOI: 10.1177/1356389016652743

Hammersley M, Atkinson P. Mixing methods: Qualitative and quantitative research. The Int J Allied Health Sci Pract. 1992;8(4):39-55.

Dixon-Woods M. Using framework-based synthesis for conducting reviews of qualitative studies. BMC Med. 2011; 9:39. DOI: 10.1186/1741-7015-9-39

Flemming K, Booth A, Garside R, Tunçalp Ö, Noyes J. Qualitative evidence synthesis for complex interventions and guideline development: clarification of the purpose, designs and relevant methods. BMJ Glob Health. 2019;4;(Suppl 1):e000882. DOI: 10.1136/bmjgh-2018-000882

Rehfuess EA, Stratil JM, Scheel IB, Portela A, Norris SL, Baltussen R. The Who-integrate evidence to decision framework version 1.0: Integrating WHO norms and values and a complexity perspective. BMJ Glob Health. 2019;4;(Suppl 1): e000844. DOI: 10.1136/bmjgh-2018-000844

Anderson LM, Petticrew M, Rehfuess E, Armstrong R, Ueffing E, Baker P et al. Using logic models to capture complexity in systematic reviews. Res Synth Methods. 2011;2(1):33-42. DOI: 10.1002/jrsm.32

Carroll C, Booth A, Leaviss J, Rick J. ’Best fit’ framework synthesis: refining the method. BMC Med Res Methodol. 2013; 13:37. DOI: 10.1186/1471-2288-13-37

Kelly MP, Noyes J, Kane RL, Chang C, Uhl S, Robinson KA et al. AHRQ series on complex intervention systematic reviews-paper 2: Defining complexity, formulating scope, and questions. J Clin Epidemiol. 2017;90:11-8. DOI: 10.1016/j.jclinepi.2017.06.012

Kneale D, Thomas J, Harris K. Developing and optimising the use of logic models in systematic reviews: exploring practice and good practice in the use of programme theory in reviews. Plos One. 2015; 10(11):e0142187. DOI: 10.1371/journal.pone.0142187

Turley R, Saith R, Bhan N, Doyle J, Jones K, Waters E. Slum upgrading review: methodological challenges that arise in systematic reviews of complex interventions. J Public Health (Oxf). 2013; 35(1):171-5. DOI: 10.1093/pubmed/fdt008

Booth A, Noyes J, Flemming K, Moore G, Tunçalp Ö, Shakibazadeh E. Formulating questions to explore complex interventions within qualitative evidence synthesis. BMJ Glob Health. 2019;4;Suppl 1:e001107. DOI: 10.1136/bmjgh-2018-001107

Chandler J, Rycroft-Malone J, Hawkes C, Noyes J. Application of simplified Complexity Theory concepts for healthcare social systems to explain the implementation of evidence into practice. J Adv Nurs. 2016;72(2):461-80.

DOI: 10.1111/jan.12815

Orlitzky M, Louche C, Gond J-P, Chapple W. Unpacking the drivers of corporate social performance: A multilevel, multistakeholder, and multimethod analysis. J Bus Ethics. 2017;144(1):21-40. DOI: 10.1007/s10551-015-2822-y

Misangyi VF, Greckhamer T, Furnari S, Fiss PC, Crilly D, Aguilera R. Embracing causal complexity: The emergence of a neo-configurational perspective. J Manag. 2017;43(1):255-82. DOI: 10.1177/0149206316679252.

Noyes J, Booth A, Moore G, Flemming K, Tunçalp Ö, Shakibazadeh E. Synthesising quantitative and qualitative evidence to inform guidelines on complex interventions: Clarifying the purposes, designs and outlining some methods. BMJ Glob Health. 2019;4;Suppl 1:e000893. DOI: 10.1136/bmjgh-2018-000893

Bonell CP, Hargreaves J, Cousens S, Ross D, Hayes R, Petticrew M et al. Alternatives to randomisation in the evaluation of public health interventions: design challenges and solutions. J Epidemiol Community Health. 2011;65(7): 582-7. DOI: 10.1136/jech.2008.082602

Petticrew M, Knai C, Thomas J, Rehfuess EA, Noyes J, Gerhardus A et al. Implications of a complexity perspective for systematic reviews and guideline development in health decision making. BMJ Glob Health. 2019;4;(Suppl 1):e000899. DOI: 10.1136/bmjgh-2018-000899

Choi TM, Lambert JH. Advances in risk analysis with big data. Risk Anal. 2017;37(8). doi: 10.1111/risa.12859, PMID 28800380.

Heesterbeek H, Anderson RM, Andreasen V, Bansal S, De Angelis D, Dye C et al. Modeling infectious disease dynamics in the complex landscape of global health. Science. 2015;347(6227): aaa4339.

DOI: 10.1126/science.aaa4339

Menzies NA, Gomez GB, Bozzani F, Chatterjee S, Foster N, Baena IG et al. Cost-effectiveness and resource implications of aggressive action on tuberculosis in China, India, and South Africa: A combined analysis of nine models. Lancet Glob Health. 2016;4(11): e816-26. DOI: 10.1016/S2214-109X(16)30265-0

Jacobsen MM, Walensky RP. Modeling and cost-effectiveness in HIV prevention. Curr HIV AIDS Rep. 2016;13(1): 64-75. DOI: 10.1007/s11904-016-0303-2

Carroll LN, Au AP, Detwiler LT, Fu TC, Painter IS, Abernethy NF. Visualization and analytics tools for infectious disease epidemiology: A systematic review. J Biomed Inform. 2014;51:287-98. DOI: 10.1016/j.jbi.2014.04.006

Han BA, Drake JM. Future directions in analytics for infectious disease intelligence: toward an integrated warning system for emerging pathogens. EMBO Rep. 2016; 17(6):785-9. DOI: 10.15252/embr.201642534

Meltzer MI, Atkins CY, Santibanez S, Knust B, Petersen BW, Ervin ED et al. Estimating the future number of cases in the Ebola epidemic--Liberia and Sierra Leone, 2014-2015. MMWR Suppl. 2014;63 (3):1-14.

Smith CM, Le Comber SC, Fry H, Bull M, Leach S, Hayward AC. Spatial methods for infectious disease outbreak investigations: systematic literature review. Euro Surveill. 2015;20(39). DOI:10.2807/1560-7917.ES.2015. 20.39. 30026

Arias A, Watson SJ, Asogun D, Tobin EA, Lu J, Phan MVT et al. Rapid outbreak sequencing of Ebola virus in Sierra Leone identifies transmission chains linked to sporadic cases. Virus Evol. 2016;2(1): vew016.

Eyler JM. The changing assessments of John Snow’s and William Farr’s cholera studies. Soz Praventivmed. 2001;46(4): 225-32. DOI: 10.1007/BF01593177

Oakeson KF, Wagner JM, Mendenhall M, Rohrwasser A, Atkinson-Dunn R. Bioinformatic analyses of whole-genome sequence data in a Public Health Laboratory. Emerg Infect Dis. 2017;23(9): 1441-5. DOI: 10.3201/eid2309.170416

Thompson RN, Morgan OW, Jalava K. Rigorous surveillance is necessary for high confidence in end-of-outbreak declarations for Ebola and other infectious diseases. Philos Trans R Soc Lond B Biol Sci. 2019;374(1776):20180431.

DOI: 10.1098/rstb.2018.0431

Christou IT. Coordination of cluster ensembles via exact methods. IEEE Trans Pattern Anal Mach Intell. 2011;33(2):279-93. DOI: 10.1109/TPAMI.2010.85

Blackhurst J, Dunn KS, Craighead CW. An empirically derived framework of global supply resiliency. J Bus Logist. 2011;32 (4):374-91. DOI: 10.1111/j.0000-0000.2011.01032.x

Bode C, Macdonald JR. Stages of supply chain disruption response: Direct, constraining, and mediating factors for impact mitigation. Decis Sci. 2017;48(5): 836-74. DOI: 10.1111/deci.12245

Brandon-Jones E, Squire B, Autry CW, Petersen KJ. A contingent resource-based perspective of supply chain resilience and robustness. J Supply Chain Manag. 2014; 50(3):55-73.

ISSN 1523-2409. DOI: 10.1111/jscm.12050 Link to official URL (if available).

Cardoso SR, Paula Barbosa-Póvoa AP, Relvas S, Novais AQ. Resilience metrics in the assessment of complex supply-chains performance operating under demand uncertainty. Omega. 2015;56:53-73.

DOI: 10.1016/

Chen C. CiteSpace: a practical guide for mapping scientific literature. Hauppauge, NY: Nova Science Publishers; 2016.

Chen D, Liu Z, Luo Z, Webber M, Chen J. Bibliometric and visualized analysis of emergy research. Ecol Eng. 2016;90:285-93. DOI: 10.1016/j.ecoleng.2016.01.026

Choi YH, Jit M, Gay N, Cox A, Garnett GP, Edmunds WJ. Transmission dynamic modelling of the impact of human papillomavirus vaccination in the United Kingdom. Vaccine. 2010;28(24):4091-102. doi: 10.1016/j.vaccine.2009.09.125

Hilbert M. Big data for development: a review of promises and challenges. Dev Policy Rev. 2016;34(1):135-74.

DOI: 10.1111/dpr.12142

King G, Keohane RO, Verba S. Designing social inquiry: scientific inference in qualitative research. Princeton University Press; 2021.

Mann L. Left to other peoples’ devices? A political economy perspective on the big data revolution in development. Dev Change. 2018;49(1):3-36. DOI: 10.1111/dech.12347

Lieberson S. Small N's and big conclusions: an examination of the reasoning in comparative studies based on a small number of cases. Soc Forces. 1991;70(2):307-20. DOI: 10.2307/2580241

Lijphart A. Comparative politics and the comparative method. Am Pol Sci Rev. 1971;65(3):682-93.

DOI: 10.2307/1955513

Mahoney J. After KKV: The new methodology of qualitative research. World Pol. 2010;62(1):120-47.

DOI: 10.1017/S0043887109990220

Amengual M. Buying stability: the distributive outcomes of private politics in the Bolivian mining industry. World Dev. 2018;104:31-45. DOI: 10.1016/j.worlddev.2017.11.008

Steinberg J. Mines, communities, and states: the local politics of natural resource extraction in Africa. Cambridge University Press; 2019.

CCSRC. Corporate social responsibility: Movements and footprints of Canadian mining and exploration firms in the developing world; 2009.

Imai S, Gardner L, Weinberger S. The’Canada brand: Violence and Canadian mining companies in Latin America. Osgoode Legal Studies Research Paper. 2017;17.

AGES A. UNDP support to the implementation of sustainable development Goal 3; 2017.

Fukuda-Parr S. From the Millennium Development Goals to the Sustainable Development Goals: Shifts in purpose, concept, and politics of global goal setting for development. Gend Dev. 2016; 24(1):43-52.

DOI: 10.1080/13552074.2016.1145895

Martínez DM, Ebenhack BW. Understanding the role of energy consumption in human development through the use of saturation phenomena. Energy Policy. 2008;36(4):1430-5. DOI: 10.1016/j.enpol.2007.12.016

Bhardwaj A, Joshi M, Khosla R, Dubash NK. More priorities, more problems? Decision-making with multiple energy, development and climate objectives. Energy Res Soc Sci. 2019;49:143-57.

DOI: 10.1016/j.erss.2018.11.003

ICSU, A. Guide to SDG Interactions: From Science to implementation, DJ Griggs, M. Nilsson, A. Stevance, D. McCollum. Paris: International Council for Science; 2017.

Sachs J, Schmidt-Traub G, Kroll C, Durand-Delacre D, Teksoz K. SDG index and dashboards report 2017: compact edition: global responsibilities: international spillovers in achieving the goals. Bertelsmann Stiftung; 2017.

Schmidt-Traub G, Kroll C, Teksoz K, Durand-Delacre D, Sachs JD. National baselines for the Sustainable Development Goals assessed in the SDG Index and Dashboards. Nat Geosci. 2017;10(8):547-55.

DOI: 10.1038/ngeo2985.

McCollum DL, Echeverri LG, Busch S, Pachauri S, Parkinson S, Rogelj J et al. Connecting the sustainable development goals by their energy inter-linkages. Environ Res Lett. 2018;13(3):033006. DOI: 10.1088/1748-9326/aaafe3

Nerini F, Tomei J, To L, Bisaga I, Parikh P, Black M et al. Mapping synergies and trade-offs between energy and the Sustainable Development Goals. Nat Energy. 2018;3:10-5.

Nilsson M, Griggs D, Visbeck M. Policy: Map the interactions between Sustainable Development Goals. Nature. 2016;534(7607):320-2. DOI: 10.1038/534320a, PMID 27306173

Bhatia M, Angelou N. Beyond Connections; 2015.

Burton RJ, Albur M, Eberl M, Cuff SM. Using artificial intelligence to reduce diagnostic workload without compromising detection of urinary tract infections. BMC Med Inform Decis Mak. 2019;19(1):171.

DOI: 10.1186/s12911-019-0878-9

Cho BJ, Choi YJ, Lee MJ, Kim JH, Son GH, Park SH et al. Classification of cervical neoplasms on colposcopic photography using deep learning. Sci Rep. 2020;10(1):13652. DOI: 10.1038/s41598-020-70490-4

Meskó B, Drobni Z, Bényei É, Gergely B, Győrffy Z. Digital health is a cultural transformation of traditional healthcare. mHealth. 2017;3:38.

DOI: 10.21037/mhealth.2017.08.07

Panch T, Szolovits P, Atun R. Artificial intelligence, machine learning and health systems. J Glob Health. 2018;8(2): 020303. DOI: 10.7189/jogh.08.020303

Yang X, Wang Y, Byrne R, Schneider G, Yang S. Concepts of artificial intelligence for computer-assisted drug discovery. Chem Rev. 2019;119(18):10520-94. DOI: 10.1021/acs.chemrev.8b00728

Arruda KEC, García M d. E.A. Geosciences= Geociências & del Lama. Inventário e quantificação do patrimônio geológico do município de Caraguatatuba, São Paulo. 2017; 36(3):447-62.

Baadi K, Sabaoui A, Tekiout B. Methodological proposal for assessment geosites: its application in Bou-Iblane Region (Middle Atlas, Morocco). Geoheritage. 2020;12:1-16.

Bollati I, Smiraglia C, Pelfini M. Assessment and selection of geomorphosites and trails in the Miage Glacier Area (Western Italian Alps). Environ Manage. 2013;51(4):951-67. DOI: 10.1007/s00267-012-9995-2

Brilha J. Inventory and quantitative assessment of geosites and geodiversity sites: A review. Geoheritage. 2016;8(2): 119-34. DOI: 10.1007/s12371-014-0139-3

Bruschi V, Cendrero A. Direct and parametric methods for the assessment of geosites and geomorphosites. Geomorphosites. 2009;9:73-88.

Cocean G, Cocean P. An assessment of gorges for purposes of identifying geomorphosites of geotourism value in the Apuseni Mountains (Romania). Geoheritage. 2017;9(1):71-81. DOI: 10.1007/s12371-016-0180-5

Coratza P, Giusti C. Methodological proposal for the assessment of the scientific quality of geomorphosites. Alp Mediterr Quat. 2005;18(1):307-13.

Erhartič B. Geomorphosite assessment. Acta Geogr Slov. 2010;50(2): 295- 319. DOI: 10.3986/AGS50206.

Fassoulas C, Mouriki D, Dimitriou-Nikolakis P, Iliopoulos G. Quantitative assessment of geotopes as an effective tool for geoheritage management. Geoheritage. 2012;4(3):177-93. DOI: 10.1007/s12371-011-0046-9

García-Cortés A, Vegas J, Carcavilla L, Díaz-Martínez E. Conceptual base and methodology of the Spanish Inventory of Sites of Geological Interest (IELIG). Instituto Geológico y Minero de España. 2019;102.

Shakeel S, Nesar S, Iffat W, Fatima B, Maqbool T, Jamshed S. A quantitative insight of the interactions of prescribers with pharmaceutical organization’s representatives in clinical settings of Karachi. Integr Pharm Res Pract. 2019;8: 75-83. DOI: 10.2147/IPRP.S196318

Basu A, Meltzer D. Quantitative methods for valuing comparative effectiveness information. Biopharm Rep. 2010;17(2):2-10.

Scholtz SE, de Klerk W, de Beer LT. The use of research methods in psychological research: A systematised review. Front Res Metr Anal. 2020;5:1. DOI: 10.3389/frma.2020.00001

Colubri A, Silver T, Fradet T, Retzepi K, Fry B, Sabeti P. Transforming clinical data into actionable prognosis models: machine-learning framework and field-deployable app to predict outcome of Ebola patients. Plos Negl Trop Dis. 2016;10(3):e0004549. DOI: 10.1371/journal.pntd.0004549

Van Kerkhove MD, Bento AI, Mills HL, Ferguson NM, Donnelly CA. A review of epidemiological parameters from Ebola outbreaks to inform early public health decision-making. Sci Data. 2015;2:150019.

DOI: 10.1038/sdata.2015.19

Jeanes E. Are we ethical? Approaches to ethics in management and organisation research. Organization. 2017;24(2):174-97. DOI: 10.1177/1350508416656930

Nayak A. Wisdom and the tragic question: moral learning and emotional perception in leadership and organisations. J Bus Ethics. 2016;137(1):1-13. DOI: 10.1007/s10551-015-2540-5

Hariri RH, Fredericks EM, Bowers KM. Uncertainty in big data analytics: Survey, opportunities, and challenges. J Big Data. 2019;6(1):44. DOI: 10.1186/s40537-019-0206-3

Iafrate F. A journey from big data to smart data. Paper presented at the Digital Enterprise Design & Management: Proceedings of the Second International Conference on Digital Enterprise Design and Management DED&M. 2014;2014.

Maugis P-AG. Big data uncertainties. J Forensic Leg Med. 2018;57:7-11. DOI: 10.1016/j.jflm.2016.09.005

Pouyanfar S, Yang Y, Chen S-C, Shyu M-L, Iyengar SS. Multimedia big data analytics: A survey. ACM Comput Surv. 2019;51(1):1-34. DOI: 10.1145/3150226

Brusset X, Teller C. Supply chain capabilities, risks, and resilience. Int J Prod Econ. 2017;184:59-68. DOI: 10.1016/j.ijpe.2016.09.008

Fao I. WFP. The state of food insecurity in the world 2015. Paper presented at the Meeting; 2015.