Learning Management System Usage among Undergraduates in a Developing Context: An Extension to the Technology Acceptance Model
Asian Journal of Education and Social Studies,
Page 33-52
DOI:
10.9734/ajess/2021/v19i430472
Abstract
Why are students in developing countries reluctant to effectively and efficiently participate in Learning Management Systems (LMSs)? Many researchers have conducted focusing on validating existing theories in developing contexts. This article aims to extend the knowledge about the Technology Acceptance Model (TAM) by incorporating external variables - subjective norms, experience in the internet and computer, self-efficacy, technical support, and anxiety - which will lead to an efficient and effective LMS usage in developing contexts.
Keywords:
- LMS
- undergraduates
- technology acceptance model (TAM)
- developing contexts
- E-learning
How to Cite
Jayarathna, R. M. G. S., & Perera, M. P. S. R. (2021). Learning Management System Usage among Undergraduates in a Developing Context: An Extension to the Technology Acceptance Model. Asian Journal of Education and Social Studies, 19(4), 33-52. https://doi.org/10.9734/ajess/2021/v19i430472
References
Al-Harbi KRAS. Investigating Factors Influencing the Adoption of E-learning: Saudi Students’ Perspective. Technology. 2011;1–316. [Online].
Available: http://hdl.handle.net/2381/9692.
Thowfeek MH, Hussin H. Instructors’ perspective on E-learning adoption in Sri Lanka: A preliminary investigation. Innov. Knowl. Manag. Bus. Glob. Theory Pract. - Proc. 10th Int. Bus. Inf. Manag. Assoc. Conf. 2008;1–2:1261–1266.
Silva I. Factors affecting the Use of eLearning tools in a student centered learning environment. Sci. Res. J. 2014;II(XI):23–28.
Tang KN. The importance of soft skills acquisition by teachers in higher education institutions. Kasetsart J. Soc. Sci. 2020;41(1):22–27.
DOI: 10.1016/j.kjss.2018.01.002.
Camilleri M. Evaluating service quality and performance of higher education institutions: a systematic review and a post-COVID-19 outlook. Int. J. Qual. Serv. Sci. 2021;13(2):268–281 [Online].
Available: https://doi.org/10.1108/IJQSS-03-2020-0034.
Eke HN. Modeling LIS students’ intention to adopt e-learning: A case from University of Nigeria, Nsukka. Libr. Philos. Pract;2011.
Chan S. Supporting practice-based learning with digital technologies. in: digitally enabling ‘learning by doing’ in vocational education. SpringerBriefs Educ;2021. [Online].
Available: https://doi.org/10.1007/978-981-16-3405-5_1.
Song MJ. The application of digital fabrication technologies to the art and design curriculum in a teacher preparation program: a case study. Int. J. Technol. Des. Educ. 2020;30(4):687–707.
DOI: 10.1007/s10798-019-09524-6.
Keller C, Cernerud L. Students’ perceptions of e-learning in university education. J. Educ. Media. 2002;27(1–2):55–67.
DOI: 10.1080/0305498032000045458.
Saadé R, Bahli B. The impact of cognitive absorption on perceived usefulness and perceived ease of use in on-line learning: An extension of the technology acceptance model. Inf. Manag. 2005;42(2):317–327.
DOI: 10.1016/j.im.2003.12.013.
Masrom M. Technology acceptance model and E-learning. 12th Int. Conf. Educ. 2007;21–24.
Lynch K, Heinze A, Scott E. Information technology team projects in higher education: an international viewpoint. Proc. 2007 InSITE Conf. 2007;6.
DOI: 10.28945/3059.
Glushkova S, Belotserkovich D, Morgunova N, Yuzhakova Y. The role of smartphones and the Internet in developing countries. Espacios. 2019;40(27).
Khlaif ZN, Salha S. The Unanticipated Educational Challenges of Developing Countries in Covid-19 Crisis : A Brief Report. Interdiscip. J. Virtual Learn. Med. Sci. 2020;11:1–6.
DOI: 10.30476/among.
Fong MWL. Digital divide: The case of developing countries. Proc. 2009 InSITE Conf. 2009;6.
DOI: 10.28945/3344.
Acilar A. Issues in informing science and information technology exploring the aspects of digital divide in a developing country. Informing Sci. Inf. Technol. 2011;8:231–244.
Almaiah MA, Al-Khasawneh A, Althunibat A. Exploring the critical challenges and factors influencing the E-learning system usage during COVID-19 pandemic. Educ. Inf. Technol., vol. 2020;25(6):5261–5280.
DOI: 10.1007/s10639-020-10219-y.
Hajiheydari N, Ashkani M. Mobile application user behavior in the developing countries: A survey in Iran. Inf. Syst. 2018;77:22–33.
DOI: 10.1016/j.is.2018.05.004.
Boateng R, Mbrokoh AS, Boateng L, Senyo PK, Ansong E. Determinants of e-learning adoption among students of developing countries. Int. J. Inf. Learn. Technol. 2016;33(4):248–262.
DOI: 10.1108/IJILT-02-2016-0008.
Shkarlet S, Oliychenko I, Dubyna M, Ditkovska M, Zhovtok V. Comparative analysis of best practices in E- government implementation and use of this experience by developing countries. Adm. si Manag. Public. 2020;2020(34):118– 136.
DOI: 10.24818/amp/2020.34-07.
Addo A, Avgerou C. Information technology and government corruption in developing countries: evidence from Ghana customs. MIS Q. Manag. Inf. Syst. 2020;1–56.
Ditsa G, Arab U, Ain A. The impact of culture on the adoption and use of it in the uae: A study towards bridging the digital divide between the uae and the developed countries. IRMA Int. Conf. 2007;1544–1549.
Mahmood MA, Hall L, Swanberg DL. Factors affecting information technology usage: A meta-analysis of the empirical literature. J. Organ. Comput. Electron. Commer. 2001;11(2):107–130,
DOI: 10.1207/S15327744JOCE1102_02.
Rhema A, Miliszewska I. Analysis of student attitudes towards e-learning: the case of engineering students in libya. Issues Informing Sci. Inf. Technol. 2014;11:169–190.
DOI: 10.28945/1987
Gulati S. DL in developing nations (including China). Int. Rev. Res. Open Distrib. Learn. 2008;9(1):1–16 [Online].
Available:http://www.irrodl.org/index.php/irrodl/article/viewArticle/477/1012.
AL-Nawafleh EA, ALSheikh GAA, Abdulllah AA, Abdul AM. Review of the impact of service quality and subjective norms in TAM among telecommunication customers in Jordan. Int. J. Ethics Syst. 2019;35(1):148–158.
DOI: 10.1108/IJOES-07-2018-0101
McKenzie D. Small business training to improve management practices in developing countries: re-assessing the evidence for ‘training doesn’t work. Oxford Rev. Econ. Policy. 2021;37(2):276–301. [Online].
Available:https://doi.org/10.1093/oxrep/grab002.
Sobaih AEE, Hasanein AM, Elnasr AEA. Responses to COVID-19 in higher education: Social media usage for sustaining formal academic communication in developing countries. Sustain. 2020;12(16):1–18.
DOI: 10.3390/su12166520
Astuti AP, Mawarsari VD, Purnomo H, Sediyono E. The use of augmented reality-based learning media to develop the technology literacy of chemistry teachers in the 21st century. AIP Conf. Proc. 2020;2215.
DOI: 10.1063/5.0000745.
Suraweera N, Liew CL, Cranefield J. Introduction information literacy is being recognized as an essential skill for the 21. IFLA 2012 Helsinki. 2012;1–13.
Phillipo BJ, Krongard S. Learning management system ( LMS ): The missing link and great enabler. 2012;1–7.
Soumplis A, Koulocheri E, Kostaras N, Karousos N, Xenos M. Learning management systems and learning 2.0. Int. J. Web-Based Learn. Teach. Technol. 2011;6(4):1–18.
DOI: 10.4018/jwltt.2011100101.
Elfeky AIM, Masadeh TSY, Elbyaly MYH. Advance organizers in flipped classroom via e-learning management system and the promotion of integrated science process skills. Think. Ski. Creat. 2020;35:100622.
DOI: 10.1016/j.tsc.2019.100622.
Raphael CE. et al. Impact of left ventricular outflow tract obstruction and microcirculatory dysfunction on coronary haemodynamics in hypertrophic cardiomyopathy. J. Am. Coll. Cardiol.. 2015;65(10):A952.
DOI: 10.1016/s0735-1097(15)60952-4.
Vershitskaya ER, Mikhaylova AV, Gilmanshina SI, Dorozhkin EM, Epaneshnikov VV. Present-day management of universities in Russia: Prospects and challenges of e-learning. Educ. Inf. Technol. 2020;25(1):611–621.
DOI: 10.1007/s10639-019-09978-0
Turnbull D, Chugh R, Luck J. Learning management systems: a review of the research methodology literature in Australia and China. Int. J. Res. Method Educ. 2021;44(2):164–178.
DOI: 10.1080/1743727X.2020.1737002
Tarhini A, Hone K, Liu X, Tarhini T. Examining the moderating effect of individual-level cultural values on users’ acceptance of E-learning in developing countries: A structural equation modeling of an extended technology acceptance model. Interact. Learn. Environ. 2017;25(3):306–328.
DOI: 10.1080/10494820.2015.1122635
Al-Gahtani SS. Empirical investigation of e-learning acceptance and assimilation: A structural equation model. Appl. Comput. Informatics. 2016;12(1):27–50.
DOI: 10.1016/j.aci.2014.09.001
Teo T, Huang F. Investigating the influence of individually espoused cultural values on teachers’ intentions to use educational technologies in Chinese universities. Interact. Learn. Environ. vol. 2019;27(5–6):813–829.
DOI: 10.1080/10494820.2018.1489856.
Xaymoungkhoun O, Bhuasiri W, Rho JJ, Zo H, Kim MG. The critical success factors of e-learning in developing countries. Kasetsart J. Soc. Sci. 2012;33(2):321–332.
Bhuasiri W, Xaymoungkhoun O, Zo H, Rho JJ, Ciganek AP. Critical success factors for e-learning in developing countries: A comparative analysis between ICT experts and faculty. Comput. Educ. 2012;58(2):843–855.
DOI: 10.1016/j.compedu.2011.10.010.
Ngai EWT, Poon JKL, Chan YHC. Empirical examination of the adoption of WebCT using TAM. Comput. Educ. 2007;48(2):250–267.
DOI: 10.1016/j.compedu.2004.11.007
Ajzen MI. Fishbein, Understanding attitudes and predicting social behavior. Englewood Cliffs: Prentice-Hall; 1980.
P. 1995 Taylor, S & Todd, “Understanding information technology usage: A test of competing methods. Inf. Syst. Res. 1995;6(2):144–176.
Chen TL, Chen TJ. Examination of attitudes towards teaching online courses based on theory of reasoned action of university faculty in Taiwan. Br. J. Educ. Technol. 2006;37(5):683–693.
DOI: 10.1111/j.1467-8535.2006.00590.x.
Hale K, Householder JL, Greene BJ. The theory of reasoned action. Theor. Persuas. 2002;259–286.
Ajzen I. Attides, personallity and behavior. International Journal of Strategic Innovative Marketing. 2005;3:117–191.
Bandura A, Bandura A, Bandura A. Bandura 1977.pdf. Self-efficacy beliefs of adolescents. 2006;84(2):307–337.
Carswell A, Venkatesh V. Learner outcomes in an asynchronous distance education environmen. Int. J. Human-Computer Stud. 2002;56:475–494.
Abdel-Wahab AG. Modeling students’ intention to adopt e-learning a case from Egypt. Turkish Online J. Distance Educ. 2008;9(1):157–168.
DOI: 10.1002/j.1681-4835.2008.tb00232.x.
Armitage CJ, Conner M. The theory of planned behaviour: Assessment of predictive validity and ‘perceived control. Br. J. Soc. Psychol. 1999;38(1): 35–54.
DOI: 10.1348/014466699164022.
Davis FD. Perceived usefulness, perceived ease of use, and user acceptance of information technology. Manag. Inf. Syst. Res. Cent. 1989;13(3):319–1003.
Davis FD, Bagozzi RP, Warshaw PR. Davis et al 1989.pdf. Management Science. 1989;35.
Szajna B. Evaluation of the Revised Acceptance. Inst. Oper. Res. Manag. Sci. 1996;42(1):85–92 [Online].
Available:http://www.jstor.org/stable/2633017.
Di Benedetto CA, Calantone RJ, Zhang C. International technology transfer: Model and exploratory study in the People’s Republic of China. Int. Mark. Rev. 2003;20(4):446–462.
DOI: 10.1108/02651330310485171
Efferson C, Lalive R, Richerson P, McElreath R, Lubell M. Models and Anti-Models: The structure of payoff-dependent social learning. SSRN Electron. J. no. 2011;290.
DOI: 10.2139/ssrn.905250.
Venkatesh V, Davis FD. Theoretical extension of the Technology Acceptance Model: Four longitudinal field studies. Manage. Sci. 2000;46(2):186–204.
DOI: 10.1287/mnsc.46.2.186.11926.
Gefen D, Straub DW. Gender differences in the perception and use of e-mail: An extension to the technology acceptance model. MIS Q. Manag. Inf. Syst. 1997;21(4):389–400.
DOI: 10.2307/249720
Abbad MM, Morris D, de Nahlik C. Looking under the Bonnet: Factors affecting student adoption of E-learning systems in Jordan. Int. Rev. Res. Open Distance Learn. 2009;10(2):1–25.
DOI: 10.19173/irrodl.v10i2.596.
Szajna B. Software evaluation and choice: Predictive validation of the technology acceptance instrument. MIS Q. Manag. Inf. Syst. 1994;18(3):319–324.
DOI: 10.2307/249621
Morris M, Dillon A. The Influence of user perceptions on software utilization: application and evaluation of a theoretical model of technology acceptance. IEEE Trans. Softw. Eng. 1997:14(4):58–65.
Hu PJ, Chau PYK, Sheng ORL, Tam KY. Examining acceptance model using physician of acceptance telemedicine technology. J. Manag. Inf. Syst. 2012;16(2):91–112.
Moon JW, Kim YG. Extending the tam for a world-wide-web context. Inf. Manag. 2001;38(4):217–230.
DOI: 10.1016/S0378-7206(00)00061-6
Koufaris M. Applying the technology acceptance model and flow theory to online consumer behavior. Inf. Syst. Res. 2002;13(2).
Vijayasarathy. Predicting consumer intentions to shop online: An empirical test of competing theories. Electron. Commer. Res. Appl. 2004;6:433–442.
Shih HP. Extended technology acceptance model of Internet utilization behavior,” Inf. Manag., 2004;41(6):719–729.
DOI: 10.1016/j.im.2003.08.009.
Phuangthong D, Malisawan S. A study of behavioral intention for 3g mobile internet technology : preliminary research on mobile learning. Proc. t he Se cond Intern ational Con f eren ce eLearning Knowledg e- Based Soc. 2005;1–7.
Theng Y, Wan E. Perceived usefulness and usability of weblogs for collaborating learning; 2007.
Lee Y, Kozar K, Larsen K. The technology acceptance model: past, present and future. Commun. Assoc. Inf. Syst. 2003;2(1):752–780.
Legris P, Ingham J, Collerette P. Why do people use information technology? A critical review of the technology acceptance model. Inf. Manag. 2003;40(3):191–204.
DOI: 10.1016/S0378-7206(01)00143-4.
S. Y. Park, “An analysis of the technology acceptance model in understanding University students’ behavioral intention to use e-Learning,” Educ. Technol. Soc., vol. 12, no. 3, pp. 150–162, 2009.
Shih YY, Huang SS. The actual usage of ERP systems: An extended technology acceptance perspective. J. Res. Pract. Inf. Technol. 2009;41(3)263–276.
Al Kurdi B, Alshurideh M, Salloum SA, Obeidat ZM, Al-dweeri RM. An empirical investigation into examination of factors influencing university students’ behavior towards elearning acceptance using SEM approach. Int. J. Interact. Mob. Technol. 2020;14(2):19–41.
DOI: 10.3991/ijim.v14i02.11115.
Alshammari SH. The influence of technical support, perceived self-efficacy, and instructional design on students’ use of learning management system.Turkish Online J. Distance Educ. 2020;21(3):112–141.
DOI: 10.17718/TOJDE.762034.
Brown I, Town C. Individual and technological factors affecting perceived ease of use of web-based learning technologies in a developing country. Electron. J. Inf. Syst. Dev. Ctries. 2002;9(5):1–15.
Igbaria M, Iivari J. The effects of self-efficacy on computer usage. Omega. 1995;23(6):587–605.
DOI: 10.1016/0305-0483(95)00035-6.
Al-Alak BA, Alnawas IAM. Measuring the acceptance and adoption of e-learning by academic staff. Knowl. Manag. E-Learning. 2011;3(2):201–221.
DOI: 10.34105/j.kmel.2011.03.016.
Cowen JB. The influence of perceived usefulness, perceived ease of use, and subjective norm on the use of computed radiography systems: a pilot study. Desertation, Master; 2009 [Online].
Available:http://hdl.handle.net/1811/36983.
Sam HK, Othman AEA, Nordin ZS. Computer self-efficacy, computer anxiety, and attitudes toward the Internet: A study among undergraduates in Unimas. Educ. Technol. Soc. 2005;8(4):205–219.
Tsai MJ, Tsai CC. Information searching strategies in Web-based science learning: The role of Internet self-efficacy. Innov. Educ. Teach. Int. 2003;40(1):43– 50.
DOI: 10.1080/1355800032000038822.
Adewole-Odeshi E. Attitude of students towards E-learning in south-west Nigerian universities: an application of technology acceptance model, Digital Commons at University of Nebraska; 2014.
Willis TJ. “An evaluation of the technology acceptance model as a means of understanding online social networking behavior. Diss. Abstr. Int. Sect. B Sci. Eng. 2009;69(8-B):5093 [Online].
Available:http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=psyc6&NEWS=N&AN=2009-99040-160.
Teo T. Technology Acceptance in Education;2011.
Rezaei M, Mohammadi HM, Asadi A, Kalantary K. Predicting e-learning application in agricultural higher education using technology acceptance model. Turkish Online J. Distance Educ. 2008;9(1):85–95.
DOI: 10.17718/tojde.47228.
Jimenez IAC, García LCC, Violante MG, Marcolin F, Vezzetti E. Commonly used external tam variables in e-learning, agriculture and virtual reality applications. Futur. Internet. 2021;13(1):1–21.
DOI: 10.3390/fi13010007.
Kumar JA, Bervell B, Annamalai N, Osman S.Behavioral intention to use mobile learning: Evaluating the role of self-efficacy, subjective norm, and whatsapp use habit. IEEE Access. 2020;8:208058–208074.
DOI: 10.1109/ACCESS.2020.3037925.
Ang WL, Jedi A, Lohgheswary N. Factors affecting the acceptance of open learning as e-learning platform by technical course students. J. Eng. Sci. Technol. 2021;16(2):903–918.
Mohammad AlHamad AQ. Acceptance of E-learning among university students in UAE: A practical study. Int. J. Electr. Comput. Eng. 2020;10(4):3660–3671.
DOI: 10.11591/ijece.v10i4.pp3660-3671.
Huang F, Teo T, Zhou M. Chinese students’ intentions to use the Internet-based technology for learning. Educ. Technol. Res. Dev. 2020;68(1):575–591.
DOI: 10.1007/s11423-019-09695-y.
Mukminin A, Habibi A, Muhaimin M, Prasojo LD. Exploring the drivers predicting behavioral intention to use m-learning management system: Partial least square structural equation model. IEEE Access. 2020;8.
DOI: 10.1109/ACCESS.2020.3028474.
Khan SA, Zainuddin M, Mahi M, Arif I. Pr ep rin t n ot pe er r ev ed Pr ep rin t n ot pe er r ev;2020.
Nadlifatin R, Ardiansyahmiraja B, Persada SF. The measurement of university students’ intention to use blended learning system through technology acceptance model (tam) and theory of planned behavior (TPB) at developed and developing regions: Lessons learned from Taiwan and Indonesia. Int. J. Emerg. Technol. Learn. 2020;15(9):219–230.
DOI: 10.3991/ijet.v15i09.11517.
Chokri B. Factors Influencing the Adoption of the E- Learning Technology in Teaching and Learning By Students of a University Class. Eur. Sci. J. 2012;8(28):165–190. [Online].
Available:http://eujournal.org/index.php/esj/article/view/645.
Mailizar M, Almanthari A, Maulina S. Examining teachers’ behavioral intention to use e-learning in teaching of mathematics: An extended tam model. Contemp. Educ. Technol. 2021;13(2):1–16.
DOI: 10.30935/CEDTECH/9709.
Alfadda HA, Mahdi HS. Measuring students’ use of zoom application in language course based on the technology acceptance model (TAM). J. Psycholinguist. Res. 2021;50(4):883–900.
DOI: 10.1007/s10936-020-09752-1.
Mailizar M, Burg D, Maulina S. Examining university students’ behavioural intention to use e-learning during the COVID-19 pandemic: An extended TAM model. Educ. Inf. Technol. 2021;0123456789.
DOI: 10.1007/s10639-021-10557-5.
Siron Y, Wibowo A, Narmaditya BS. Factors Affecting the Adoption of E-Learning in Indonesia: Lesson From Covid-19. J. Technol. Sci. Educ. 2020;10(2):282-295.
DOI: 10.3926/jotse.1025.
Ndubisi NO. Factors influencing e-learning adoption intention : Examining the determinant structure of the decomposed theory of planned behaviour constructs. Herdsa 2004 Conf. Proc. 2004;252–262.
Thongsri N, Shen L, Bao Y. Investigating academic major differences in perception of computer self-efficacy and intention toward e-learning adoption in China. Innov. Educ. Teach. Int. 2020;57(5):577–589.
DOI: 10.1080/14703297.2019.1585904.
AlQudah Ahmed A. Accepting Moodle By Academic Staff At the University of jordan : Applying and extending tam in technical support factors. Eur. Sci. J. 2014;10(18):183–200.
Koloseni DN, Mandari H, Msonge VT. Extending TAM to Understand Library User Acceptance of E-Books in Tanzania. Int. J. Libr. Inf. Serv. 2021;10(2):46–63.
DOI: 10.4018/ijlis.20210701.oa4.
Wismantoro Y, Himawan H, Widiyatmoko K. Measuring the interest of smartphone usage by using technology acceptance model approach. J. Asian Financ. Econ. Bus. 2020;7(9):613–620.
DOI:10.13106/JAFEB.2020.VOL7.NO9.613.
Tsai TH, Lin WY, Chang YS, Chang PC, Lee MY. Technology anxiety and resistance to change behavioral study of a wearable cardiac warming system using an extended TAM for older adults. PLoS One. 2020;15(1):1–24.
DOI: 10.1371/journal.pone.0227270.
Lazar IM, Panisoara G, Panisoara IO. Digital technology adoption scale in the blended learning context in higher education: Development, validation and testing of a specific tool. PLoS One. 2020;15(7):1–27.
DOI: 10.1371/journal.pone.0235957.
Fishbein M, Ajzen I. Belief, attitude, intentions and behaviour: an introduction to theory and research; 1975.
Kashif M, Zarkada A, Ramayah T. The impact of attitude, subjective norms, and perceived behavioural control on managers’ intentions to behave ethically. Total Qual. Manag. Bus. Excell. 2018;29(5–6):481–501.
DOI: 10.1080/14783363.2016.1209970.
Khan F, Ahmed W, Najmi A. “Understanding consumers’ behavior intentions towards dealing with the plastic waste: Perspective of a developing country. Resour. Conserv. Recycl. 2019;142(2018):49–58.
DOI: 10.1016/j.resconrec.2018.11.020.
Wang X, Pacho F, Liu J, Kajungiro R. Factors influencing organic food purchase intention in Tanzania and Kenya and the moderating role of knowledge. Sustain. 11(1):2019.
DOI: 10.3390/su11010209.
Kimathi FA, Zhang Y. Exploring the general extended technology acceptance model for e-learning approach on student’s usage intention on e-learning system in university of Dar es Salaam. Creat. Educ. 2019;10(01):208–223.
DOI: 10.4236/ce.2019.101017.
Kanwal F, Rehman M. Factors affecting e-learning adoption in developing countries-empirical evidence from pakistan’s higher education sector. IEEE Access. 2017;5:10968–10978.
DOI: 10.1109/ACCESS.2017.2714379.
Sun H, Zhang P. The role of moderating factors in user technology acceptance. Int. J. Hum. Comput. Stud. 2006;64(2):53–78.
DOI: 10.1016/j.ijhcs.2005.04.013.
Pituch KA, kuei Lee Y. The influence of system characteristics on e-learning use. Comput. Educ. 2006;47(2):222–244.
DOI: 10.1016/j.compedu.2004.10.007.
Tan M, Teo TSH. Factors influencing the adoption of internet banking. J. Assoc. Inf. Syst. 2000;1(1):1–44.
Arbaugh J, Duray R. Class section size, perceived classroom characteristics, instructor experience, and student learning and satisfaction with web-based courses: a study and comparison of two on-line MBA programs; 2002.
Kim KJ, Liu S, Bonk C. Online MBA students’ perceptions of online learning: benefits, challenges, and suggestions. Internet High. Educ. 2005;8(4):335–344. [Online].
Available:http://www.westga.edu/~distance/ojdla/summer102/liu102.htm.
Huang W, Cheung W. Proposing a framework to assess internet usage in university education: An empirical investigation from a students perspective. Br. J. Educ. Technol. 2005;36(2):237–253. [Online].
Available:http://elinks.dialog.com/servlet/LinkManager.StarLinksDirector?issn=0007-1013&vol=36&issue=2&page=237&epage=253&year=2005&lm=false&rel=v3&userid=AABAIY%7CKCLSTWB4910&publ=openURL8331295&aulast=Huang&pf_id=0&app=EDUCATAH&snr=20101103_160257_669f3_21&db=BRE.
Akugizibwe E, Ahn JY. Perspectives for effective integration of e-learning tools in university mathematics instruction for developing countries. Educ. Inf. Technol. 2020;25(2):889–903.
DOI: 10.1007/s10639-019-09995-z.
Aftab M. E-Governance practices in developing countries. 2019;79–86.
Iqbal S, Bhatti ZA. A qualitative exploration of teachers’ perspective on smartphones usage in higher education in developing countries. Int. J. Educ. Technol. High. Educ. 2020;17(1).
DOI: 10.1186/s41239-020-00203-4.
Jeon Y, Song K. Short-term ICT training program for non-computer science major teachers in developing countries for improving ict teaching efficacy. Int. J. Adv. smart Converg. 2018;7(2):73–85.[Online].
Available:http://koreascience.or.kr/article/JAKO201820540194210.page.
Queiros DR, MR. (Ruth) de Villiers, “Online learning in a South African Higher Education Institution: Determining the right connections for the student. Int. Rev. Res. Open Distance Learn. 2016;17(5):165–185.
DOI: 10.19173/irrodl.v17i5.2552.
Rottmann B. Integrating the technology acceptance model into a service oriented analysis and design methodology;2013.
Chang PVC. The validity of an extended technology acceptance model (tam) for predicting intranet/ portal usage, MSc Hons Thesis, University of North Carolina; 2004.
Venkatesh V, Morris MG, Davis GB, Davis FD. User acceptance of information technology: Toward a unified view. MIS Q. Manag. Inf. Syst. 2003;27(3):425–478.
DOI: 10.2307/30036540.
Karahanna E, Straub DW, Chervany NL. Information technology adoption across time : A cross-sectional comparison of. MIS Quart. 1999;23(2):183–213.
Li H, Yu J. Learners’ continuance participation intention of collaborative group project in virtual learning environment: an extended TAM perspective. J. Data, Inf. Manag. 2020;2 (1):39–53.
DOI: 10.1007/s42488-019-00017-8.
Kerka S. Distance learning, the internet, and the world wide web. Eric Dig. 1996;ED395214:1–7 [Online].
Available:http://techedu.huji.ac.il/techedu/talmidim/ezra/Distance Learning, the Internet, and the World Wide Web.htm.
Bandura A. Toward a psychology of human agency. Perspectives on Psychological Science. 2006;1(2):164–180.
DOI: 10.1111/j.1745-6916.2006.00011.x.
Bandura A. Adolescent development from an agentic perspective. Self-efficacy beliefs Adolesc. 2006;1–44.
Cassidy S, Eachus P. Learning style, academic belief systems, self-report student proficiency and academic achievement in higher education. Educ. Psychol. 2000;20(3):307–322.
DOI: 10.1080/713663740.
Eastin M, LaRose R. Internet self- efficacy and the psychology of the digital divide. J. Comput. Commun. 2000;6(1). [Online].
Available:http://onlinelibrary.wiley.com/doi/10.1111/j.1083-6101.2000.tb00110.x/full.
Venkatesh V. Favorable Creation User Perceptions : the Role of Intrinsic. MIS Q. 1999;23(2):239–260.
Lim CK. Computer self–efficacy, academic self–concept, and other predictors of satisfaction and future participation of adult distance learners. Int. J. Phytoremediation. 2001;21(1):41–51.
DOI: 10.1080/08923640109527083.
Robertson M, Al-Zahrani A. Self-efficacy and ICT integration into initial teacher education in Saudi Arabia: Matching policy with practice. Australas. J. Educ. Technol. 2012;28(7):1136–1151.
DOI: 10.14742/ajet.793.
Kundu A. Toward a framework for strengthening participants’ self-efficacy in online education. Asian Assoc. Open Univ. J. 2020;15(3):351–370.
DOI: 10.1108/aaouj-06-2020-0039.
Seng C, Kristine M, Carlon J, Gayed JM, Cross JS. Long-term effects of short-term intervention using moocs for developing cambodian undergraduate research skills.
Shih YY. The effect of computer self-efficacy on enterprise resource planning usage. Behav. Inf. Technol. 2006;25(5) :407–411.
DOI: 10.1080/01449290500168103.
Wood R, Bandura A. Wood & Bandura (1989).pdf. Academy of Management Review. 1989;14(3):361 [Online].
Available:http://www.jstor.org/stable/258173?origin=crossref.
Lau A, Yen J, Chau PYK. Adoption of On-line Trading in the Hong Kong Financial Market. J. Electron. Commer. Res. 2001;2(2):58–65.
Venkatesh V. Determinants of perceived ease of use: integrating control, intrinsic motivation, and emotion into the technology acceptance model. Inf. Syst. Res. 2000;11(4):342–365.
DOI: 10.1287/isre.11.4.342.11872.
Erasmus E, Rothmann S, van Eeden C. A structural model of technology acceptance. SA J. Ind. Psychol. 2015;41(1):1– 12.
DOI: 10.4102/sajip.v41i1.1222.
Tarhini A, Hone K, Liu X. Factors affecting students’ acceptance of e-learning environments in developing countries:a structural equation modeling approach. Int. J. Inf. Educ. Technol. 2013;3(1):54– 59.
DOI: 10.7763/ijiet.2013.v3.233.
Available: http://hdl.handle.net/2381/9692.
Thowfeek MH, Hussin H. Instructors’ perspective on E-learning adoption in Sri Lanka: A preliminary investigation. Innov. Knowl. Manag. Bus. Glob. Theory Pract. - Proc. 10th Int. Bus. Inf. Manag. Assoc. Conf. 2008;1–2:1261–1266.
Silva I. Factors affecting the Use of eLearning tools in a student centered learning environment. Sci. Res. J. 2014;II(XI):23–28.
Tang KN. The importance of soft skills acquisition by teachers in higher education institutions. Kasetsart J. Soc. Sci. 2020;41(1):22–27.
DOI: 10.1016/j.kjss.2018.01.002.
Camilleri M. Evaluating service quality and performance of higher education institutions: a systematic review and a post-COVID-19 outlook. Int. J. Qual. Serv. Sci. 2021;13(2):268–281 [Online].
Available: https://doi.org/10.1108/IJQSS-03-2020-0034.
Eke HN. Modeling LIS students’ intention to adopt e-learning: A case from University of Nigeria, Nsukka. Libr. Philos. Pract;2011.
Chan S. Supporting practice-based learning with digital technologies. in: digitally enabling ‘learning by doing’ in vocational education. SpringerBriefs Educ;2021. [Online].
Available: https://doi.org/10.1007/978-981-16-3405-5_1.
Song MJ. The application of digital fabrication technologies to the art and design curriculum in a teacher preparation program: a case study. Int. J. Technol. Des. Educ. 2020;30(4):687–707.
DOI: 10.1007/s10798-019-09524-6.
Keller C, Cernerud L. Students’ perceptions of e-learning in university education. J. Educ. Media. 2002;27(1–2):55–67.
DOI: 10.1080/0305498032000045458.
Saadé R, Bahli B. The impact of cognitive absorption on perceived usefulness and perceived ease of use in on-line learning: An extension of the technology acceptance model. Inf. Manag. 2005;42(2):317–327.
DOI: 10.1016/j.im.2003.12.013.
Masrom M. Technology acceptance model and E-learning. 12th Int. Conf. Educ. 2007;21–24.
Lynch K, Heinze A, Scott E. Information technology team projects in higher education: an international viewpoint. Proc. 2007 InSITE Conf. 2007;6.
DOI: 10.28945/3059.
Glushkova S, Belotserkovich D, Morgunova N, Yuzhakova Y. The role of smartphones and the Internet in developing countries. Espacios. 2019;40(27).
Khlaif ZN, Salha S. The Unanticipated Educational Challenges of Developing Countries in Covid-19 Crisis : A Brief Report. Interdiscip. J. Virtual Learn. Med. Sci. 2020;11:1–6.
DOI: 10.30476/among.
Fong MWL. Digital divide: The case of developing countries. Proc. 2009 InSITE Conf. 2009;6.
DOI: 10.28945/3344.
Acilar A. Issues in informing science and information technology exploring the aspects of digital divide in a developing country. Informing Sci. Inf. Technol. 2011;8:231–244.
Almaiah MA, Al-Khasawneh A, Althunibat A. Exploring the critical challenges and factors influencing the E-learning system usage during COVID-19 pandemic. Educ. Inf. Technol., vol. 2020;25(6):5261–5280.
DOI: 10.1007/s10639-020-10219-y.
Hajiheydari N, Ashkani M. Mobile application user behavior in the developing countries: A survey in Iran. Inf. Syst. 2018;77:22–33.
DOI: 10.1016/j.is.2018.05.004.
Boateng R, Mbrokoh AS, Boateng L, Senyo PK, Ansong E. Determinants of e-learning adoption among students of developing countries. Int. J. Inf. Learn. Technol. 2016;33(4):248–262.
DOI: 10.1108/IJILT-02-2016-0008.
Shkarlet S, Oliychenko I, Dubyna M, Ditkovska M, Zhovtok V. Comparative analysis of best practices in E- government implementation and use of this experience by developing countries. Adm. si Manag. Public. 2020;2020(34):118– 136.
DOI: 10.24818/amp/2020.34-07.
Addo A, Avgerou C. Information technology and government corruption in developing countries: evidence from Ghana customs. MIS Q. Manag. Inf. Syst. 2020;1–56.
Ditsa G, Arab U, Ain A. The impact of culture on the adoption and use of it in the uae: A study towards bridging the digital divide between the uae and the developed countries. IRMA Int. Conf. 2007;1544–1549.
Mahmood MA, Hall L, Swanberg DL. Factors affecting information technology usage: A meta-analysis of the empirical literature. J. Organ. Comput. Electron. Commer. 2001;11(2):107–130,
DOI: 10.1207/S15327744JOCE1102_02.
Rhema A, Miliszewska I. Analysis of student attitudes towards e-learning: the case of engineering students in libya. Issues Informing Sci. Inf. Technol. 2014;11:169–190.
DOI: 10.28945/1987
Gulati S. DL in developing nations (including China). Int. Rev. Res. Open Distrib. Learn. 2008;9(1):1–16 [Online].
Available:http://www.irrodl.org/index.php/irrodl/article/viewArticle/477/1012.
AL-Nawafleh EA, ALSheikh GAA, Abdulllah AA, Abdul AM. Review of the impact of service quality and subjective norms in TAM among telecommunication customers in Jordan. Int. J. Ethics Syst. 2019;35(1):148–158.
DOI: 10.1108/IJOES-07-2018-0101
McKenzie D. Small business training to improve management practices in developing countries: re-assessing the evidence for ‘training doesn’t work. Oxford Rev. Econ. Policy. 2021;37(2):276–301. [Online].
Available:https://doi.org/10.1093/oxrep/grab002.
Sobaih AEE, Hasanein AM, Elnasr AEA. Responses to COVID-19 in higher education: Social media usage for sustaining formal academic communication in developing countries. Sustain. 2020;12(16):1–18.
DOI: 10.3390/su12166520
Astuti AP, Mawarsari VD, Purnomo H, Sediyono E. The use of augmented reality-based learning media to develop the technology literacy of chemistry teachers in the 21st century. AIP Conf. Proc. 2020;2215.
DOI: 10.1063/5.0000745.
Suraweera N, Liew CL, Cranefield J. Introduction information literacy is being recognized as an essential skill for the 21. IFLA 2012 Helsinki. 2012;1–13.
Phillipo BJ, Krongard S. Learning management system ( LMS ): The missing link and great enabler. 2012;1–7.
Soumplis A, Koulocheri E, Kostaras N, Karousos N, Xenos M. Learning management systems and learning 2.0. Int. J. Web-Based Learn. Teach. Technol. 2011;6(4):1–18.
DOI: 10.4018/jwltt.2011100101.
Elfeky AIM, Masadeh TSY, Elbyaly MYH. Advance organizers in flipped classroom via e-learning management system and the promotion of integrated science process skills. Think. Ski. Creat. 2020;35:100622.
DOI: 10.1016/j.tsc.2019.100622.
Raphael CE. et al. Impact of left ventricular outflow tract obstruction and microcirculatory dysfunction on coronary haemodynamics in hypertrophic cardiomyopathy. J. Am. Coll. Cardiol.. 2015;65(10):A952.
DOI: 10.1016/s0735-1097(15)60952-4.
Vershitskaya ER, Mikhaylova AV, Gilmanshina SI, Dorozhkin EM, Epaneshnikov VV. Present-day management of universities in Russia: Prospects and challenges of e-learning. Educ. Inf. Technol. 2020;25(1):611–621.
DOI: 10.1007/s10639-019-09978-0
Turnbull D, Chugh R, Luck J. Learning management systems: a review of the research methodology literature in Australia and China. Int. J. Res. Method Educ. 2021;44(2):164–178.
DOI: 10.1080/1743727X.2020.1737002
Tarhini A, Hone K, Liu X, Tarhini T. Examining the moderating effect of individual-level cultural values on users’ acceptance of E-learning in developing countries: A structural equation modeling of an extended technology acceptance model. Interact. Learn. Environ. 2017;25(3):306–328.
DOI: 10.1080/10494820.2015.1122635
Al-Gahtani SS. Empirical investigation of e-learning acceptance and assimilation: A structural equation model. Appl. Comput. Informatics. 2016;12(1):27–50.
DOI: 10.1016/j.aci.2014.09.001
Teo T, Huang F. Investigating the influence of individually espoused cultural values on teachers’ intentions to use educational technologies in Chinese universities. Interact. Learn. Environ. vol. 2019;27(5–6):813–829.
DOI: 10.1080/10494820.2018.1489856.
Xaymoungkhoun O, Bhuasiri W, Rho JJ, Zo H, Kim MG. The critical success factors of e-learning in developing countries. Kasetsart J. Soc. Sci. 2012;33(2):321–332.
Bhuasiri W, Xaymoungkhoun O, Zo H, Rho JJ, Ciganek AP. Critical success factors for e-learning in developing countries: A comparative analysis between ICT experts and faculty. Comput. Educ. 2012;58(2):843–855.
DOI: 10.1016/j.compedu.2011.10.010.
Ngai EWT, Poon JKL, Chan YHC. Empirical examination of the adoption of WebCT using TAM. Comput. Educ. 2007;48(2):250–267.
DOI: 10.1016/j.compedu.2004.11.007
Ajzen MI. Fishbein, Understanding attitudes and predicting social behavior. Englewood Cliffs: Prentice-Hall; 1980.
P. 1995 Taylor, S & Todd, “Understanding information technology usage: A test of competing methods. Inf. Syst. Res. 1995;6(2):144–176.
Chen TL, Chen TJ. Examination of attitudes towards teaching online courses based on theory of reasoned action of university faculty in Taiwan. Br. J. Educ. Technol. 2006;37(5):683–693.
DOI: 10.1111/j.1467-8535.2006.00590.x.
Hale K, Householder JL, Greene BJ. The theory of reasoned action. Theor. Persuas. 2002;259–286.
Ajzen I. Attides, personallity and behavior. International Journal of Strategic Innovative Marketing. 2005;3:117–191.
Bandura A, Bandura A, Bandura A. Bandura 1977.pdf. Self-efficacy beliefs of adolescents. 2006;84(2):307–337.
Carswell A, Venkatesh V. Learner outcomes in an asynchronous distance education environmen. Int. J. Human-Computer Stud. 2002;56:475–494.
Abdel-Wahab AG. Modeling students’ intention to adopt e-learning a case from Egypt. Turkish Online J. Distance Educ. 2008;9(1):157–168.
DOI: 10.1002/j.1681-4835.2008.tb00232.x.
Armitage CJ, Conner M. The theory of planned behaviour: Assessment of predictive validity and ‘perceived control. Br. J. Soc. Psychol. 1999;38(1): 35–54.
DOI: 10.1348/014466699164022.
Davis FD. Perceived usefulness, perceived ease of use, and user acceptance of information technology. Manag. Inf. Syst. Res. Cent. 1989;13(3):319–1003.
Davis FD, Bagozzi RP, Warshaw PR. Davis et al 1989.pdf. Management Science. 1989;35.
Szajna B. Evaluation of the Revised Acceptance. Inst. Oper. Res. Manag. Sci. 1996;42(1):85–92 [Online].
Available:http://www.jstor.org/stable/2633017.
Di Benedetto CA, Calantone RJ, Zhang C. International technology transfer: Model and exploratory study in the People’s Republic of China. Int. Mark. Rev. 2003;20(4):446–462.
DOI: 10.1108/02651330310485171
Efferson C, Lalive R, Richerson P, McElreath R, Lubell M. Models and Anti-Models: The structure of payoff-dependent social learning. SSRN Electron. J. no. 2011;290.
DOI: 10.2139/ssrn.905250.
Venkatesh V, Davis FD. Theoretical extension of the Technology Acceptance Model: Four longitudinal field studies. Manage. Sci. 2000;46(2):186–204.
DOI: 10.1287/mnsc.46.2.186.11926.
Gefen D, Straub DW. Gender differences in the perception and use of e-mail: An extension to the technology acceptance model. MIS Q. Manag. Inf. Syst. 1997;21(4):389–400.
DOI: 10.2307/249720
Abbad MM, Morris D, de Nahlik C. Looking under the Bonnet: Factors affecting student adoption of E-learning systems in Jordan. Int. Rev. Res. Open Distance Learn. 2009;10(2):1–25.
DOI: 10.19173/irrodl.v10i2.596.
Szajna B. Software evaluation and choice: Predictive validation of the technology acceptance instrument. MIS Q. Manag. Inf. Syst. 1994;18(3):319–324.
DOI: 10.2307/249621
Morris M, Dillon A. The Influence of user perceptions on software utilization: application and evaluation of a theoretical model of technology acceptance. IEEE Trans. Softw. Eng. 1997:14(4):58–65.
Hu PJ, Chau PYK, Sheng ORL, Tam KY. Examining acceptance model using physician of acceptance telemedicine technology. J. Manag. Inf. Syst. 2012;16(2):91–112.
Moon JW, Kim YG. Extending the tam for a world-wide-web context. Inf. Manag. 2001;38(4):217–230.
DOI: 10.1016/S0378-7206(00)00061-6
Koufaris M. Applying the technology acceptance model and flow theory to online consumer behavior. Inf. Syst. Res. 2002;13(2).
Vijayasarathy. Predicting consumer intentions to shop online: An empirical test of competing theories. Electron. Commer. Res. Appl. 2004;6:433–442.
Shih HP. Extended technology acceptance model of Internet utilization behavior,” Inf. Manag., 2004;41(6):719–729.
DOI: 10.1016/j.im.2003.08.009.
Phuangthong D, Malisawan S. A study of behavioral intention for 3g mobile internet technology : preliminary research on mobile learning. Proc. t he Se cond Intern ational Con f eren ce eLearning Knowledg e- Based Soc. 2005;1–7.
Theng Y, Wan E. Perceived usefulness and usability of weblogs for collaborating learning; 2007.
Lee Y, Kozar K, Larsen K. The technology acceptance model: past, present and future. Commun. Assoc. Inf. Syst. 2003;2(1):752–780.
Legris P, Ingham J, Collerette P. Why do people use information technology? A critical review of the technology acceptance model. Inf. Manag. 2003;40(3):191–204.
DOI: 10.1016/S0378-7206(01)00143-4.
S. Y. Park, “An analysis of the technology acceptance model in understanding University students’ behavioral intention to use e-Learning,” Educ. Technol. Soc., vol. 12, no. 3, pp. 150–162, 2009.
Shih YY, Huang SS. The actual usage of ERP systems: An extended technology acceptance perspective. J. Res. Pract. Inf. Technol. 2009;41(3)263–276.
Al Kurdi B, Alshurideh M, Salloum SA, Obeidat ZM, Al-dweeri RM. An empirical investigation into examination of factors influencing university students’ behavior towards elearning acceptance using SEM approach. Int. J. Interact. Mob. Technol. 2020;14(2):19–41.
DOI: 10.3991/ijim.v14i02.11115.
Alshammari SH. The influence of technical support, perceived self-efficacy, and instructional design on students’ use of learning management system.Turkish Online J. Distance Educ. 2020;21(3):112–141.
DOI: 10.17718/TOJDE.762034.
Brown I, Town C. Individual and technological factors affecting perceived ease of use of web-based learning technologies in a developing country. Electron. J. Inf. Syst. Dev. Ctries. 2002;9(5):1–15.
Igbaria M, Iivari J. The effects of self-efficacy on computer usage. Omega. 1995;23(6):587–605.
DOI: 10.1016/0305-0483(95)00035-6.
Al-Alak BA, Alnawas IAM. Measuring the acceptance and adoption of e-learning by academic staff. Knowl. Manag. E-Learning. 2011;3(2):201–221.
DOI: 10.34105/j.kmel.2011.03.016.
Cowen JB. The influence of perceived usefulness, perceived ease of use, and subjective norm on the use of computed radiography systems: a pilot study. Desertation, Master; 2009 [Online].
Available:http://hdl.handle.net/1811/36983.
Sam HK, Othman AEA, Nordin ZS. Computer self-efficacy, computer anxiety, and attitudes toward the Internet: A study among undergraduates in Unimas. Educ. Technol. Soc. 2005;8(4):205–219.
Tsai MJ, Tsai CC. Information searching strategies in Web-based science learning: The role of Internet self-efficacy. Innov. Educ. Teach. Int. 2003;40(1):43– 50.
DOI: 10.1080/1355800032000038822.
Adewole-Odeshi E. Attitude of students towards E-learning in south-west Nigerian universities: an application of technology acceptance model, Digital Commons at University of Nebraska; 2014.
Willis TJ. “An evaluation of the technology acceptance model as a means of understanding online social networking behavior. Diss. Abstr. Int. Sect. B Sci. Eng. 2009;69(8-B):5093 [Online].
Available:http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=psyc6&NEWS=N&AN=2009-99040-160.
Teo T. Technology Acceptance in Education;2011.
Rezaei M, Mohammadi HM, Asadi A, Kalantary K. Predicting e-learning application in agricultural higher education using technology acceptance model. Turkish Online J. Distance Educ. 2008;9(1):85–95.
DOI: 10.17718/tojde.47228.
Jimenez IAC, García LCC, Violante MG, Marcolin F, Vezzetti E. Commonly used external tam variables in e-learning, agriculture and virtual reality applications. Futur. Internet. 2021;13(1):1–21.
DOI: 10.3390/fi13010007.
Kumar JA, Bervell B, Annamalai N, Osman S.Behavioral intention to use mobile learning: Evaluating the role of self-efficacy, subjective norm, and whatsapp use habit. IEEE Access. 2020;8:208058–208074.
DOI: 10.1109/ACCESS.2020.3037925.
Ang WL, Jedi A, Lohgheswary N. Factors affecting the acceptance of open learning as e-learning platform by technical course students. J. Eng. Sci. Technol. 2021;16(2):903–918.
Mohammad AlHamad AQ. Acceptance of E-learning among university students in UAE: A practical study. Int. J. Electr. Comput. Eng. 2020;10(4):3660–3671.
DOI: 10.11591/ijece.v10i4.pp3660-3671.
Huang F, Teo T, Zhou M. Chinese students’ intentions to use the Internet-based technology for learning. Educ. Technol. Res. Dev. 2020;68(1):575–591.
DOI: 10.1007/s11423-019-09695-y.
Mukminin A, Habibi A, Muhaimin M, Prasojo LD. Exploring the drivers predicting behavioral intention to use m-learning management system: Partial least square structural equation model. IEEE Access. 2020;8.
DOI: 10.1109/ACCESS.2020.3028474.
Khan SA, Zainuddin M, Mahi M, Arif I. Pr ep rin t n ot pe er r ev ed Pr ep rin t n ot pe er r ev;2020.
Nadlifatin R, Ardiansyahmiraja B, Persada SF. The measurement of university students’ intention to use blended learning system through technology acceptance model (tam) and theory of planned behavior (TPB) at developed and developing regions: Lessons learned from Taiwan and Indonesia. Int. J. Emerg. Technol. Learn. 2020;15(9):219–230.
DOI: 10.3991/ijet.v15i09.11517.
Chokri B. Factors Influencing the Adoption of the E- Learning Technology in Teaching and Learning By Students of a University Class. Eur. Sci. J. 2012;8(28):165–190. [Online].
Available:http://eujournal.org/index.php/esj/article/view/645.
Mailizar M, Almanthari A, Maulina S. Examining teachers’ behavioral intention to use e-learning in teaching of mathematics: An extended tam model. Contemp. Educ. Technol. 2021;13(2):1–16.
DOI: 10.30935/CEDTECH/9709.
Alfadda HA, Mahdi HS. Measuring students’ use of zoom application in language course based on the technology acceptance model (TAM). J. Psycholinguist. Res. 2021;50(4):883–900.
DOI: 10.1007/s10936-020-09752-1.
Mailizar M, Burg D, Maulina S. Examining university students’ behavioural intention to use e-learning during the COVID-19 pandemic: An extended TAM model. Educ. Inf. Technol. 2021;0123456789.
DOI: 10.1007/s10639-021-10557-5.
Siron Y, Wibowo A, Narmaditya BS. Factors Affecting the Adoption of E-Learning in Indonesia: Lesson From Covid-19. J. Technol. Sci. Educ. 2020;10(2):282-295.
DOI: 10.3926/jotse.1025.
Ndubisi NO. Factors influencing e-learning adoption intention : Examining the determinant structure of the decomposed theory of planned behaviour constructs. Herdsa 2004 Conf. Proc. 2004;252–262.
Thongsri N, Shen L, Bao Y. Investigating academic major differences in perception of computer self-efficacy and intention toward e-learning adoption in China. Innov. Educ. Teach. Int. 2020;57(5):577–589.
DOI: 10.1080/14703297.2019.1585904.
AlQudah Ahmed A. Accepting Moodle By Academic Staff At the University of jordan : Applying and extending tam in technical support factors. Eur. Sci. J. 2014;10(18):183–200.
Koloseni DN, Mandari H, Msonge VT. Extending TAM to Understand Library User Acceptance of E-Books in Tanzania. Int. J. Libr. Inf. Serv. 2021;10(2):46–63.
DOI: 10.4018/ijlis.20210701.oa4.
Wismantoro Y, Himawan H, Widiyatmoko K. Measuring the interest of smartphone usage by using technology acceptance model approach. J. Asian Financ. Econ. Bus. 2020;7(9):613–620.
DOI:10.13106/JAFEB.2020.VOL7.NO9.613.
Tsai TH, Lin WY, Chang YS, Chang PC, Lee MY. Technology anxiety and resistance to change behavioral study of a wearable cardiac warming system using an extended TAM for older adults. PLoS One. 2020;15(1):1–24.
DOI: 10.1371/journal.pone.0227270.
Lazar IM, Panisoara G, Panisoara IO. Digital technology adoption scale in the blended learning context in higher education: Development, validation and testing of a specific tool. PLoS One. 2020;15(7):1–27.
DOI: 10.1371/journal.pone.0235957.
Fishbein M, Ajzen I. Belief, attitude, intentions and behaviour: an introduction to theory and research; 1975.
Kashif M, Zarkada A, Ramayah T. The impact of attitude, subjective norms, and perceived behavioural control on managers’ intentions to behave ethically. Total Qual. Manag. Bus. Excell. 2018;29(5–6):481–501.
DOI: 10.1080/14783363.2016.1209970.
Khan F, Ahmed W, Najmi A. “Understanding consumers’ behavior intentions towards dealing with the plastic waste: Perspective of a developing country. Resour. Conserv. Recycl. 2019;142(2018):49–58.
DOI: 10.1016/j.resconrec.2018.11.020.
Wang X, Pacho F, Liu J, Kajungiro R. Factors influencing organic food purchase intention in Tanzania and Kenya and the moderating role of knowledge. Sustain. 11(1):2019.
DOI: 10.3390/su11010209.
Kimathi FA, Zhang Y. Exploring the general extended technology acceptance model for e-learning approach on student’s usage intention on e-learning system in university of Dar es Salaam. Creat. Educ. 2019;10(01):208–223.
DOI: 10.4236/ce.2019.101017.
Kanwal F, Rehman M. Factors affecting e-learning adoption in developing countries-empirical evidence from pakistan’s higher education sector. IEEE Access. 2017;5:10968–10978.
DOI: 10.1109/ACCESS.2017.2714379.
Sun H, Zhang P. The role of moderating factors in user technology acceptance. Int. J. Hum. Comput. Stud. 2006;64(2):53–78.
DOI: 10.1016/j.ijhcs.2005.04.013.
Pituch KA, kuei Lee Y. The influence of system characteristics on e-learning use. Comput. Educ. 2006;47(2):222–244.
DOI: 10.1016/j.compedu.2004.10.007.
Tan M, Teo TSH. Factors influencing the adoption of internet banking. J. Assoc. Inf. Syst. 2000;1(1):1–44.
Arbaugh J, Duray R. Class section size, perceived classroom characteristics, instructor experience, and student learning and satisfaction with web-based courses: a study and comparison of two on-line MBA programs; 2002.
Kim KJ, Liu S, Bonk C. Online MBA students’ perceptions of online learning: benefits, challenges, and suggestions. Internet High. Educ. 2005;8(4):335–344. [Online].
Available:http://www.westga.edu/~distance/ojdla/summer102/liu102.htm.
Huang W, Cheung W. Proposing a framework to assess internet usage in university education: An empirical investigation from a students perspective. Br. J. Educ. Technol. 2005;36(2):237–253. [Online].
Available:http://elinks.dialog.com/servlet/LinkManager.StarLinksDirector?issn=0007-1013&vol=36&issue=2&page=237&epage=253&year=2005&lm=false&rel=v3&userid=AABAIY%7CKCLSTWB4910&publ=openURL8331295&aulast=Huang&pf_id=0&app=EDUCATAH&snr=20101103_160257_669f3_21&db=BRE.
Akugizibwe E, Ahn JY. Perspectives for effective integration of e-learning tools in university mathematics instruction for developing countries. Educ. Inf. Technol. 2020;25(2):889–903.
DOI: 10.1007/s10639-019-09995-z.
Aftab M. E-Governance practices in developing countries. 2019;79–86.
Iqbal S, Bhatti ZA. A qualitative exploration of teachers’ perspective on smartphones usage in higher education in developing countries. Int. J. Educ. Technol. High. Educ. 2020;17(1).
DOI: 10.1186/s41239-020-00203-4.
Jeon Y, Song K. Short-term ICT training program for non-computer science major teachers in developing countries for improving ict teaching efficacy. Int. J. Adv. smart Converg. 2018;7(2):73–85.[Online].
Available:http://koreascience.or.kr/article/JAKO201820540194210.page.
Queiros DR, MR. (Ruth) de Villiers, “Online learning in a South African Higher Education Institution: Determining the right connections for the student. Int. Rev. Res. Open Distance Learn. 2016;17(5):165–185.
DOI: 10.19173/irrodl.v17i5.2552.
Rottmann B. Integrating the technology acceptance model into a service oriented analysis and design methodology;2013.
Chang PVC. The validity of an extended technology acceptance model (tam) for predicting intranet/ portal usage, MSc Hons Thesis, University of North Carolina; 2004.
Venkatesh V, Morris MG, Davis GB, Davis FD. User acceptance of information technology: Toward a unified view. MIS Q. Manag. Inf. Syst. 2003;27(3):425–478.
DOI: 10.2307/30036540.
Karahanna E, Straub DW, Chervany NL. Information technology adoption across time : A cross-sectional comparison of. MIS Quart. 1999;23(2):183–213.
Li H, Yu J. Learners’ continuance participation intention of collaborative group project in virtual learning environment: an extended TAM perspective. J. Data, Inf. Manag. 2020;2 (1):39–53.
DOI: 10.1007/s42488-019-00017-8.
Kerka S. Distance learning, the internet, and the world wide web. Eric Dig. 1996;ED395214:1–7 [Online].
Available:http://techedu.huji.ac.il/techedu/talmidim/ezra/Distance Learning, the Internet, and the World Wide Web.htm.
Bandura A. Toward a psychology of human agency. Perspectives on Psychological Science. 2006;1(2):164–180.
DOI: 10.1111/j.1745-6916.2006.00011.x.
Bandura A. Adolescent development from an agentic perspective. Self-efficacy beliefs Adolesc. 2006;1–44.
Cassidy S, Eachus P. Learning style, academic belief systems, self-report student proficiency and academic achievement in higher education. Educ. Psychol. 2000;20(3):307–322.
DOI: 10.1080/713663740.
Eastin M, LaRose R. Internet self- efficacy and the psychology of the digital divide. J. Comput. Commun. 2000;6(1). [Online].
Available:http://onlinelibrary.wiley.com/doi/10.1111/j.1083-6101.2000.tb00110.x/full.
Venkatesh V. Favorable Creation User Perceptions : the Role of Intrinsic. MIS Q. 1999;23(2):239–260.
Lim CK. Computer self–efficacy, academic self–concept, and other predictors of satisfaction and future participation of adult distance learners. Int. J. Phytoremediation. 2001;21(1):41–51.
DOI: 10.1080/08923640109527083.
Robertson M, Al-Zahrani A. Self-efficacy and ICT integration into initial teacher education in Saudi Arabia: Matching policy with practice. Australas. J. Educ. Technol. 2012;28(7):1136–1151.
DOI: 10.14742/ajet.793.
Kundu A. Toward a framework for strengthening participants’ self-efficacy in online education. Asian Assoc. Open Univ. J. 2020;15(3):351–370.
DOI: 10.1108/aaouj-06-2020-0039.
Seng C, Kristine M, Carlon J, Gayed JM, Cross JS. Long-term effects of short-term intervention using moocs for developing cambodian undergraduate research skills.
Shih YY. The effect of computer self-efficacy on enterprise resource planning usage. Behav. Inf. Technol. 2006;25(5) :407–411.
DOI: 10.1080/01449290500168103.
Wood R, Bandura A. Wood & Bandura (1989).pdf. Academy of Management Review. 1989;14(3):361 [Online].
Available:http://www.jstor.org/stable/258173?origin=crossref.
Lau A, Yen J, Chau PYK. Adoption of On-line Trading in the Hong Kong Financial Market. J. Electron. Commer. Res. 2001;2(2):58–65.
Venkatesh V. Determinants of perceived ease of use: integrating control, intrinsic motivation, and emotion into the technology acceptance model. Inf. Syst. Res. 2000;11(4):342–365.
DOI: 10.1287/isre.11.4.342.11872.
Erasmus E, Rothmann S, van Eeden C. A structural model of technology acceptance. SA J. Ind. Psychol. 2015;41(1):1– 12.
DOI: 10.4102/sajip.v41i1.1222.
Tarhini A, Hone K, Liu X. Factors affecting students’ acceptance of e-learning environments in developing countries:a structural equation modeling approach. Int. J. Inf. Educ. Technol. 2013;3(1):54– 59.
DOI: 10.7763/ijiet.2013.v3.233.
-
Abstract View: 479 times
PDF Download: 196 times