Academic Performance of Grade V Pupils Using Science Strategic Intervention Material in Zambales, Philippines

Alex S. Villar a, Evangeline R. Gabriel a and Elizabeth N. Farin a*

a President Ramon Magsaysay State University, Iba, Zambales, Philippines.

Authors’ contributions
This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information
DOI: 10.9734/AJESS/2022/v33i130783

Open Peer Review History:
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/91425

ABSTRACT

Teachers in Science are challenged to use Strategic intervention materials to improve students' academic performance. The objective of the study was to improve the academic performance of Grade V pupils through SIM (Strategic Intervention Material) in Science. The researcher used descriptive and quasi-experimental research methods to determine the effectiveness of SIM. Respondents were given sets of SIM to be utilized and answered. A pretest-post test design was used for comparison. The data collected were statistically treated through the mean, standard deviation, and T-test and Analysis of Variance. The results showed that the students were rated poor and “Did not meet the expectation” in the pre-test, while “Outstanding” in the post-test. There was a significant difference on the performance of the students based on the results of the pre-test and post-test. The teacher-respondents “Strongly Agreed” that the contents, interventional design and organizational presentation were acceptable. There was no significant difference in the assessment of acceptability as to contents, interventional design, organizational presentation, and assessment, respectively. SIM may be adopted as an “aid” for instructional materials in teaching to facilitate learning and improve performance of students. SIM made by the researcher can be used by teachers to re-teach the concepts and skills.

Keywords: Strategic intervention material; academic performance; science.
1. INTRODUCTION

1.1 Background

“Science is included as a core subject at the elementary and secondary levels despite conceptual complexity and high cost of implementation” [1]. Another justification for the inclusion of science in school curricula is that all citizens’ need to achieve a degree of “scientific literacy” to enable them to participate effectively as citizens in modern societies. Studies indicate however, that many of our Filipino learners are not attaining functional literacy, without which they find it too difficult to meet the challenges post by our rapidly changing world.

The implementation of K to 12 programs using the spiral progression approach in teaching Science is on hardcore and problems are always encountered [2-5]. Based on the study of Javier [6] of implementing the spiral approach in Science, it was found out that the four areas such as Teaching Competency, Learners Competency, Assessment Tools, and Interventional Materials, the least managed of them all is the Learners’ Competency. Students lack deeper understanding of the topics.

Results of Suarez and Casinillo [7] and [8] studies showed that “the use of SIM is effective in terms of improving students’ performance particularly on the topic pertaining to the least mastered skills in Science VI”. According to Lange (2012) confer this scaffolding is a particularly the effective method to use with children in failing school. In learning and teaching process, problems always occur. Intellectual ability, attitude of the students toward studies and the strategies used by the teacher in teachings are some of the challenges that should be addressed [9].

In line with these issues, the Department of education (DepEd) continuously implements innovations particularly in Science. According to research of Dacunos [10], “the Department of Education in the Philippines had employed a solution for the deteriorating academic performance of students in the field of Science and Technology. As stipulated in the DepEd Order No. 39 S. 2012, interventions have to be made in order to address learning gaps. The use of Strategic Intervention Material (SIM) is identified as one of the suggested various intervention form that can bridge learning gaps. Trainings were conducted to equip teachers in the preparation of SIM”. “An example of this is the National training on Strategic Interventions Materials (SIM). The training workshop aims to enhance teacher’s skill in test analysis and interpretation and capacitate them in developing various intervention materials for remediation and enrichment of learning” [11].

As an offshoot of the workshop attended by the researcher, a strategic intervention material (SIM) was developed and tested its effectiveness to grade V pupils as well as its acceptability to the teachers handling Science in the elementary school.

1.2 Research Questions

This study aimed to improve the academic performance of students through SIM (Strategic Intervention Material) in Science. This study will use the experimental research which is the pre-test and post-test design.

Specifically, it sought answers to the following questions:

1. What is the level of academic performance of the pupils before and after using activity card assessment card as strategic intervention method?
2. How is the Strategic Intervention Material (SIM) activity and assessment be described in terms of:
 a) Validity
 b) Content
 c) Structure design, and
 d) Organizational presentation?
3. Is there significant difference in the academic performance of the grade V pupils before and after using strategic intervention material?
4. Is there significant difference in the Assessment on Test Validity on Strategic Interventional Materials (SIM) as cited in problem number 2?

1.3 Theoretical Framework

This study is anchored on Raymond [12], “scaffolding instruction as a teaching strategy that originates from Lev Vygotsky’s sociocultural theory and his concept of the zone of proximal development (ZPD). The zone of proximal development is the distance between what children can do by themselves and the next learning that they can achieve with competent assistance. It is that areas between what a
learner can do independently (master level) and what they can accomplish with the assistance of a competent adult or peer (Interventional level). Vygotsky believe that any child could be taught any subject effectively using the scaffolding techniques by applying the scaffolds at the ZPD”. Moreover, Olson and Platt [13] explain that “in scaffolding instruction, a more knowledgeable other provides scaffolds or supports to facilitate a student’s ability to build on prior knowledge and internalize a new information. The activities provided in scaffolding instruction are just beyond the level of what the learner can do more”.

In addition, Bransford, Brown & Cocking [14] confer that “the more capable other provides the scaffolds so that the learner can accomplish (with assistance) the tasks that he or she could otherwise not complete, thus helping the learner through the ZPD. On the other hand, Hartman [15] expound that in the educational setting scaffolds may include models, cues, prompts, hints, partial solutions, think-aloud, modelling and direct instruction. And the behavioural theory of Watson is found to be applicable on the change in the behaviour of an organism as product of the learning” [16-19].

Since the Strategic Intervention Materials (SIM) used by the students involved several parts wherein the students worked on, it is in this context that learner-teacher dialogue will be observed. The learners need to empower and to have control over the learning process. So the teacher relinquishes a great deal of authority and becomes a facilitator.

2. METHODOLOGY

2.1 Research Design

This study used the Quasi-Experimental Technique. Quasi-experimental research involves the manipulation of an independent variable without the random assignment of participants to conditions or orders of conditions. Among the important types are nonequivalent groups designs, pretest-posttest, and interrupted time-series designs.

The Quasi-experimental studies encompass a broad range of nonrandomized intervention studies. These designs are frequently used when it is not logistically feasible or not ethical to conduct a randomized, controlled trial—the “gold standard” of causal research design.

The initial test scores of the pupils were determined before using the Strategic Intervention Material (SIM) and the final test scores were determined after employing the Strategic Intervention Material (SIM) in Science.

2.2 Respondents and Sampling Technique

This study composed of respondents from pupils who are currently enrolled at Cabangan District. In this manner, the respondents have diverse qualities in terms of intellect and scientific ability.

The sample respondents of this study covered the 66 randomly selected pupils of the two (2) schools in Cabangan District enrolled during the school year 2019-2020, sixteen (16) classroom teachers.

These studies make use of the Experimental Technique which is the pre-test and post-test design to analyze the academic performance of the pupils. The pre-test is given to identify the level of performance of the pupils before they exposed to the strategy, and post-test is given to the pupils to measure the result the SIM affecting the academic performance of the pupils. The respondents will be given treatment as the result of the SIM.

2.3 Location of Study

The location of the study are the 2 schools of Cabangan. Namely Camiing Elementary School and Laoag Elementary School. Fig. 1 on the next page shows the map of Cabangan, Zambales and the location of the selected Elementary Schools.

2.4 Instruments

The following were the research instruments used in the study.

2.4.1 Strategic intervention materials

These are the intervention materials that are intended to assist teachers in providing the necessary support to students in order for them to progress. They attempted to broaden and deepen their abilities, knowledge, and understanding from concrete science to more abstract science. They provided students with the opportunity to investigate their
comprehension and make sense of these new scientific ideas. They assisted pupils in formalising what they had learned and understood from their teachers. Furthermore, they were interventional resources designed to reteach the concept(s) and skill(s) to assist the learner in mastering competency-based skills that they were unable to develop during classroom instruction. The SIM has five parts such as the guide card, activity card, assessment card, enrichment card and reference card.

2.5 Data Collection

All the data will serve as the basis to find the improvement of the academic performance of pupils in Science through the Strategic Intervention Material. Data will be tabulated, tallied, organized, statistically treated, and analyzed. With the use of questionnaires, the researcher was to classify the approach using the pre-test and post-test, the implementation of the Strategic Intervention Material as the approach in improving the academic performance of the pupils. The mean score of the respondents in SIM was the basis for identifying the learning approach.

The performance of the respondents was measure using the pre-test and post-test. Pre-test and Post-test scores of the learner’s and surface learners was compared in terms of the highest and lowest scores, mean scores, and standard deviation.

Teachers’ perception about the use of SIM was tabulated. The survey utilized scales from 1 – 5 with equivalent remarks or descriptions. Frequency of the responses of the respondents was tallied and will be presented. Weighted mean for each statement and overall weighted mean was computed. Qualitative interpretation was based on the weighted mean computed using the ranges 1-1.99 (Not Valid (NV)), 2-2.99 (Moderately Valid (MV)), 3-3.99 Valid (V), 4-4.99 (Highly Valid (HV)), 5 Extremely Valid (EV). All the data was processed using SPSS version 11.0 statistical software.

2.6 Data Analysis

The statistical treatment of this study used descriptive statistical tools such as percentage, rank, and mean distribution. The ANOVA was used as inferential statistics.

Fig. 1. Map of Cabangan, Zambaes showing the location of Camiing and Laoag Elementary School
3. RESULTS AND DISCUSSION

3.1 Assessment of the Pre-Test and Post-Test in Science

Table 1 shows the students’ Academic Performance in the Pre-Test and Post Assessment in Science.

Table 1 shows the pre-test results indicating that majority had obtain scores ranges from 2-11 with 63 or equivalent to 95.50%. The computed mean of the assessment in the pre-test was 6.75 interpreted as “Did not meet the expectation”. The students’ pre-test results revealed that they have low academic success levels. The findings point to treatments that can help pupils enhance their academic performance. It is possible that if teachers do not include appropriate interventions in remediation classes, students’ academic achievement will remain at the same level, which is very poor. The findings show that the student finds difficulties with comprehension; prerequisite and essential knowledge and/or abilities have not been gained or developed properly to help understanding. A similar finding in the pre-test scores was revealed in a study conducted by Barredo [20] that “both groups of research subjects had the same level of mastery before an intervention was introduced to the experimental group and traditional Interventional material to the control group”.

On the post-test assessment, majority with 54 or equivalent to 81.80% obtained scores ranged from 17-20. The computed mean of the assessment was 17.62 interpreted as “Outstanding”. The result from the analysis points out that the results in the post-assessment obtained a greater mean gain score than during the pre-test administration. Thus, students performed better in the post-test. Students learned best in the topic because the material given through SIM was simplified and easy to understand. The students were able to understand the definition of constellation, determine the different forms of star patterns, identify the constellations and zodiac constellation, and understand the use of starts in the lives of man. Hence, information is retained longer, and mastery was achieved. The effectiveness of SIM as a strategy needs to be explored to measure its relevance in teaching workplace. As shown in the table, it contributes greater gain on the part of the students. Thus, it can be used as intervention strategy in making the lesson easy to understand and mastery was achieved on the part of the students. This idea was supported by the findings of Ceballos [21] which says that collaboration is a shared act by each member of the group and allows each member to collectively gain knowledge and learn on their own. This statement is in line when SIM was employed in the teaching process. Since SIM entails collaboration on the part of the students. Thus, students learned best if there is collaboration among the members of the group.

“With this, it can be inferred that there is a concrete manifestation of the Gestalt Theory wherein students learn best when they can build on experience, relate what they are learning to things that are relevant to them, have direct “hands-on” experience, construct their own knowledge in collaboration with other students and communicate their result effectively” [22]. The same is true as the researcher’s findings agreed with the findings of Gultiano [23], who found out that “intervention materials contributed to better learning of the concepts among students wherein students manifested better retention of concepts learned and that students who used the SIM are more superior in applying the knowledge in problem solving exercises”.

Table 1. Student academic performance in the pre-test and post assessment in science

<table>
<thead>
<tr>
<th>Transmuted Grade</th>
<th>Pre-test</th>
<th>Post-test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Raw Score</td>
<td>%</td>
</tr>
<tr>
<td>Below 75 Did not meet Expectation</td>
<td>2-11</td>
<td>63</td>
</tr>
<tr>
<td>75-79 Fairly Satisfactory</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>80-84 Satisfactory</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>85-89 Very Satisfactory</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>90-100 Outstanding</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>66</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Mean 6.75 Out 17.62

Interpretation Did not meet Expectation Outstanding
This result agrees with the findings of Soriano [24] and Tabago [25], who found out that “intervention materials contributed to better learning of the concepts among students resulting to better academic performance”.

3.2 Assessment on Test Validity on Strategic Interventional Materials (SIM)

Table 2 shows the Summary Table on the Assessment of Test Validity for Strategic Interventional Materials (SIM).

The teacher-respondents assessed “Strongly Agreed” on the content manifested on the high mean value of 4.99 and ranked 1st followed by assessment, 4.96 and ranked 2nd; organizational presentation, 4.86 and ranked 3rd while Interventional design with mean of 4.74 and ranked 4th. The computed grand mean was 4.89 with qualitative interpretation of “Strongly Agree”.

Strategic intervention material is believed to be an effective strategic teaching aid for teachers in carrying out objectives on least learned lessons. It is a module that incorporates puzzles, games, vivid illustrations, and a concept map that are meant to inspire and pique the pupils’ attention and interest. Strategic intervention materials are instructional materials meant to teach the concept and skills. Materials are given to students to help them master a competency-based skill which they were not able to develop during the regular classroom teaching [26,27]. The aim of SIM is to make students master the least learned concepts in science. In doing so, once they mastered the concept, they can easily comprehend questions and answer it correctly, thus, better academic gain is achieved.

3.3 Test of Differences between Pre-Test and Post-Test

Table 3 shows the t-Test: paired two samples for means to determine differences between the Pre-Test and Post-test assessment.

There is significant difference on the results of the assessment between pre-test and post-test manifested on the computed t-test value of 21.45579514 which is greater than t-critical (One-tail test) value of 1.729132812 or t-critical (two-tail test) of 2.093024054, therefore the Null Hypothesis is Rejected, hence, there is significant difference. There is a statistically significant difference in academic achievement between the pre-test and post-test groups, with the post-test group outperforming the pre-test group. The usage of SIM as a remedial tool must have caused the difference. The adoption of SIM improved pupils’ academic achievement significantly.

Table 2. Assessment of test validity for Strategic Interventional Materials (SIM)

<table>
<thead>
<tr>
<th>Dimension on Test Validity on Strategic Interventional Materials (SIM)</th>
<th>Overall Weighted Mean</th>
<th>Qualitative Interpretation</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content</td>
<td>4.99</td>
<td>Strongly Agree</td>
<td>1</td>
</tr>
<tr>
<td>Interventional Design</td>
<td>4.74</td>
<td>Strongly Agree</td>
<td>4</td>
</tr>
<tr>
<td>Organizational Presentation</td>
<td>4.86</td>
<td>Strongly Agree</td>
<td>3</td>
</tr>
<tr>
<td>Assessment</td>
<td>4.96</td>
<td>Strongly Agree</td>
<td>2</td>
</tr>
<tr>
<td>Grand Mean</td>
<td>4.89</td>
<td>Strongly Agree</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. t-Test: Paired two sample for means to determine differences between the pre-test and post-test assessment

<table>
<thead>
<tr>
<th></th>
<th>Pre-Test</th>
<th>Post-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>28.1</td>
<td>55.7</td>
</tr>
<tr>
<td>Variance</td>
<td>34.83157895</td>
<td>7.484210526</td>
</tr>
<tr>
<td>Observations</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Pearson Correlation</td>
<td>0.285555761</td>
<td>0</td>
</tr>
<tr>
<td>Hypothesized Mean Difference</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Df</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>t Stat</td>
<td>21.45579514</td>
<td></td>
</tr>
<tr>
<td>t Critical one-tail</td>
<td>1.729132812</td>
<td></td>
</tr>
<tr>
<td>t Critical two-tail</td>
<td>2.093024054</td>
<td></td>
</tr>
</tbody>
</table>
This implies that employing SIM as a remedial tool has a significant impact on students’ Science performance [28,29,26]. Furthermore, results indicate that students subjected to this intervention material have a better likelihood of increasing or enhancing their academic performance in Science. Similar findings were observed by Blalock GC [30] and Soberano [31] in their studies using Interventional materials that resulted to “a significant increase in the post-test mean scores as compared from the pre-test mean scores of the experimental group after employing an intervening Interventional material as remediation tool.”

Helping students understand better in the classroom is one of the primary concerns of every teacher (Gerard, Mary Johnson (2010). Teachers need to motivate students how to learn. Students who comprehend the lesson are more engaged and exhibit many traits such as being drawn to perform work, persevering in the task despite problems and hurdles, and taking obvious pleasure in completing their work [32,33].

According to Bretz [34], Novak’s Theory of Human Constructivism states that “a meaningful learning underlies the constructive integration of thinking. Feeling and acting, leading to human empowerment for commitment and responsibility”. Meaningful learning will only occur when education gives students with experiences that push them to connect information across three domains: cognitive, affective, or psychomotor.

3.4 Analysis of Variance to Test Differences on the Dimensions towards Assessment of Test Validity for Strategic Interventional Materials

Table 4 shows the Analysis of Variance to test differences on the dimensions towards Assessment of Test Validity for Strategic Interventional Materials.

There is no significant difference on the assessment towards dimensions of Assessment of Test Validity for Strategic Interventional Materials (SIM) manifested on the computed F value equivalent to 1.45143 which is lower than (<) the F critical value of 3.238872, therefore the Null Hypothesis is Accepted, hence there is no significant difference.

The data simply suggest on the similarity and likeness in determining the degree of validity and differences. The dimension of contents, interventional design, organizational presentation, and assessment was considered with equal perspective.

In the study of Bransford, Brown & Cocking [14] confer that “the more capable other provides the scaffolds so that the learner can accomplish (with assistance) the tasks that he or she could otherwise not complete, thus helping the learner through the ZPD”. On the other hand, Hartman [15] expound that “in the educational setting scaffolds may include models, cues, prompts, hints, partial solutions, think-aloud, modelling, and direct instruction”. And the behavioural theory of Watson is found to be applicable is on the change in the behaviour of an organism as product of the learning. Collette and Chiapatte [35] said that “there is a good match between student’s developmental stage and the cognitive complexity of the instructional materials. Students have a greater chance to achieve the desire of learning outcomes”. However, they go on to say that if the contents are overly abstract and difficult, many pupils may not be able to understand the subject. Science teachers and curriculum designers must be aware of the cognitive operations, framework, or reasoning.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Count</th>
<th>Sum</th>
<th>Average</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content</td>
<td>5</td>
<td>24.94</td>
<td>4.988</td>
<td>0.00072</td>
</tr>
<tr>
<td>Interventional Design</td>
<td>5</td>
<td>23.7</td>
<td>4.74</td>
<td>0.13985</td>
</tr>
<tr>
<td>Organizational Presentation</td>
<td>5</td>
<td>24.31</td>
<td>4.862</td>
<td>0.03452</td>
</tr>
<tr>
<td>Assessment</td>
<td>5</td>
<td>24.82</td>
<td>4.964</td>
<td>0.00108</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>P-value</th>
<th>F crit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Groups</td>
<td>0.191775</td>
<td>3</td>
<td>0.06392</td>
<td>1.45143</td>
<td>0.26514</td>
<td>3.238872</td>
</tr>
<tr>
<td>Within Groups</td>
<td>0.70468</td>
<td>16</td>
<td>0.04404</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.896455</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
patterns necessary to master a specific set of materials if they are to identify learning outcomes that students may achieve [36-39].

The learner-teacher discourse will be examined in this context since the Strategic Intervention Materials (SIM) used by the students had multiple components that the students worked on. The process of learning needs to be empowered and within the learners' control. As a result, the instructor gives up a lot of control and shifts to a facilitator role.

4. CONCLUSION AND RECOMMENDATION

The academic performance significantly improved when the Strategic Intervention Materials were employed to the Grade V pupils. From the rating of poor and "Did not meet the expectation" in the pre-test assessment their scores improved to outstanding in the post-test assessment. The teacher-respondents "Strongly Agreed" as to acceptability of the SIM terms of contents, interventional design, organizational presentation, and assessment. However, there is no significant difference on the assessment towards dimensions of Assessment of Test Validity for Strategic Interventional Materials (SIM) as to contents, interventional design, organizational presentation, and assessment, respectively.

Based on the conclusion, the researcher recommends the use of Strategic Intervention Material (SIM) to improve the performance of students.

CONSENT

As per international standard or university standard, respondents' written consent has been collected and preserved by the author(s).

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Bartomalaque A. Basic Science Development Preogram of the Philippines for International Corporation, University of San Carlos; 2009.
10. Dacunos, Leo Peter Narciza. Perspective of Secondary Teachers in the Utilization of Science Strategic Intervention Material (SIM) in Increasing Learning Proficiency of Students in Science Education; 2016.
New York: City Colleges of City University of New York. 2002;23-69.

19. Fraser and Giddings as cited by Wheatley. New Personal Form of Science Laboratory Environment Inventory (SLEI); 1995.

24. Soriano A. The Efficacy of Strategic Intervention Materials with Physics and Mathematics Remediation to the Achievement of Selected Fourth Year Students of Las Nieves; 2012.

27. DepEd Order No.8 s. Policy Guidelines on Classroom Management for K to 12 Basic Program; 2015.

© 2022 Villar et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.